1
|
Abirami G, Alexpandi R, Jayaprakash E, Roshni PS, Ravi AV. Pyrogallol loaded chitosan-based polymeric hydrogel for controlling Acinetobacter baumannii wound infections: Synthesis, characterization, and topical application. Int J Biol Macromol 2024; 259:129161. [PMID: 38181925 DOI: 10.1016/j.ijbiomac.2023.129161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Antibacterial hydrogels have emerged as a promising approach for wound healing, owing to their ability to integrate antibacterial agents into the hydrogel matrix. Benefiting from its remarkable antibacterial and wound-healing attributes, pyrogallol has been introduced into chitosan-gelatin for the inaugural development of an innovative antibacterial polymeric hydrogel tailored for applications in wound healing. Hence, we observed the effectiveness of pyrogallol in inhibiting the growth of A. baumannii, disrupting mature biofilms, and showcasing robust antioxidant activity both in vitro and in vivo. In addition, pyrogallol promoted the migration of human epidermal keratinocytes and exhibited wound healing activity in zebrafish. These findings suggest that pyrogallol holds promise as a therapeutic agent for wound healing. Interestingly, the pyrogallol-loaded chitosan-gelatin (Pyro-CG) hydrogel exhibited enhanced mechanical strength, stability, controlled drug release, biodegradability, antibacterial activity, and biocompatibility. In vivo results established that Pyro-CG hydrogel promotes wound closure and re-epithelialization in A. baumannii-induced wounds in molly fish. Therefore, the prepared Pyro-CG polymeric hydrogel stands poised as a potent and promising agent for wound healing with antibacterial properties. This holds considerable promise for the development of effective therapeutic interventions to address the increasing menace of A. baumannii-induced wound infections.
Collapse
Affiliation(s)
- Gurusamy Abirami
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Rajaiah Alexpandi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India; The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Erusappan Jayaprakash
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Prithiviraj Swasthikka Roshni
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
2
|
Huang J, Lu D, Wu C, Pei D, Guo C, Guo H, Yu S, Gao B. Guanidinylated bioactive chitosan-based injectable hydrogels with pro-angiogenic and mechanical properties for accelerated wound closure. Int J Biol Macromol 2024; 258:128943. [PMID: 38143070 DOI: 10.1016/j.ijbiomac.2023.128943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Wound healing is a complex process involving the concerted action of many genes and signaling pathways, with angiogenesis being crucial for expediting wound closure. Dressings that possess pro-angiogenic properties are increasingly recognized as attractive candidates for wound care. Drawing inspiration from the active closure of wounds in embryos, we have developed a thermo-responsive hydrogel with mechanoactive properties, combining vascular regeneration and skin wound contraction to accelerate healing. The significant improvement in vascular reconstruction is attributed to the synergistic effect of arginine and deferoxamine (DFO) released from the hydrogels. Additionally, the contraction force of the hydrogel actively promotes skin closure in wounds. Remarkably, groups treated with hydroxybutyl chitosan methacrylate combined with arginine (HBC_m_Arg/DFO) exhibited increased vascularization, and greater wound maturity, leading to enhanced healing. These results highlight the synergistic impact of pro-angiogenic and mechanical properties of the HBC_m_Arg/DFO hydrogel in accelerating wound healing in rats.
Collapse
Affiliation(s)
- Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Daohuan Lu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Caixia Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Dating Pei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Cuiping Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Huilong Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China; National Engineering Research Center for Healthcare Devices, Guangzhou 510632, PR China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, PR China.
| |
Collapse
|
3
|
Zulkiflee I, Amirrah IN, Fadilah NIM, Wee MFMR, Yusop SM, Maarof M, Fauzi MB. Characterization of Dual-Layer Hybrid Biomatrix for Future Use in Cutaneous Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031162. [PMID: 36770168 PMCID: PMC9919111 DOI: 10.3390/ma16031162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/12/2023]
Abstract
A skin wound without immediate treatment could delay wound healing and may lead to death after severe infection (sepsis). Any interruption or inappropriate normal wound healing, mainly in these wounds, commonly resulted in prolonged and excessive skin contraction. Contraction is a common mechanism in wound healing phases and contributes 40-80% of the original wound size post-healing. Even though it is essential to accelerate wound healing, it also simultaneously limits movement, mainly in the joint area. In the worst-case scenario, prolonged contraction could lead to disfigurement and loss of tissue function. This study aimed to fabricate and characterise the elastin-fortified gelatin/polyvinyl alcohol (PVA) film layered on top of a collagen sponge as a bilayer hybrid biomatrix. Briefly, the combination of halal-based gelatin (4% (w/v)) and PVA ((4% (w/v)) was used to fabricate composite film, followed by the integration of poultry elastin (0.25 mg/mL) and 0.1% (w/v) genipin crosslinking. Furthermore, further analysis was conducted on the composite bilayer biomatrix's physicochemical and mechanical strength. The bilayer biomatrix demonstrated a slow biodegradation rate (0.374967 ± 0.031 mg/h), adequate water absorption (1078.734 ± 42.33%), reasonable water vapour transmission rate (WVTR) (724.6467 ± 70.69 g/m2 h) and porous (102.5944 ± 28.21%). The bilayer biomatrix also exhibited an excellent crosslinking degree and was mechanically robust. Besides, the elastin releasing study presented an acceptable rate post-integration with hybrid biomatrix. Therefore, the ready-to-use bilayer biomatrix will benefit therapeutic effects as an alternative treatment for future diabetic skin wound management.
Collapse
Affiliation(s)
- Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectrics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Salma Mohamad Yusop
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
State of the Art of Hydrogel Wound Dressings Developed by Ionizing Radiation. Gels 2023; 9:gels9010055. [PMID: 36661821 PMCID: PMC9858288 DOI: 10.3390/gels9010055] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The development of an ideal hydrogel wound dressing with excellent characteristics is currently a significant demand in wound therapy. The ideal hydrogel wound dressing must provide a moist environment between the wound and the dressing, promote wound healing, absorb excess exudate and toxins, be completely sterile, and not adhere to the wound. The evolution and current status of research on hydrogel wound dressings obtained exclusively through production by ionizing radiation are discussed in this paper review, along with the preparation methods, properties, standard characterization techniques, and their applications in wound dressing. First, we described the methods for synthesizing hydrogel wound dressings with ionizing radiation. Then, standard methods of characterization of hydrogel wound dressings such as gel fraction, swelling degree, sol-gel analysis, rheological properties, morphology, moisture retention capability, and water vapor transmission rate have been investigated. In the end, specific attention was paid to the drug release, antibacterial performance, and cytotoxicity of hydrogels. Moreover, the application of hydrogel in regenerative medicine as wound healing dressing was covered.
Collapse
|
5
|
Liu H, Ma C, Xu H, Zhang H, Xu R, Zhang K, Sun R, Li K, Wu Q, Wen L, Zhang L, Guo Y. In vivo Detection of Macromolecule Free Radicals in Mouse Sepsis-Associated Encephalopathy Using a New MRI and Immunospin Trapping Strategy. Int J Nanomedicine 2022; 17:3809-3820. [PMID: 36072961 PMCID: PMC9444031 DOI: 10.2147/ijn.s378726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Free radicals in oxidative stress are known to play a pathogenic role in sepsis. A major clinical challenge associated with sepsis is sepsis-associated encephalopathy (SAE). The rapid increase of free radicals in the brain promotes SAE progression. Here, macromolecule free radicals in the mouse brain were uniquely detected by immunospin trapping (IST) and magnetic resonance imaging (MRI). Methods The new strategy uses spin trapping agent DEPMPO-biotin to capture macromolecule free radicals in lesions and form biotin-DEPMPO-radical adducts. Then, a targeting MRI probe, avidin-BSA@Gd-ESIO, was used to detect the radical adducts through the highly specific binding of avidin and biotin. The avidin-BSA@Gd-ESIO probe was synthesized and systematically characterized. The detection capability of the new strategy was evaluated in vitro and in vivo using a confocal microscope and a 7T MRI, respectively. Results In reactive oxygen species (ROS)–induced microglial cells, the accumulation of the avidin-BSA@Gd-ESIO probe in the DEPMPO-biotin-treated group was significantly higher than that of control groups. In vivo MRI T1 signal intensities were significantly higher within the hippocampus, striatum, and medial cortex of the brain in mice with a mild or severe degree of sepsis compared with the sham control group. Histological analysis validated that the distribution of the avidin-BSA@Gd-ESIO probe in brain tissue slices was consistent with the MRI images. The fluorescence signals of ROS and avidin-BSA@Gd-ESIO probe were overlapped and visualized using immunofluorescent staining. By evaluating the T1 signal changes over time in different areas of the brain, we estimated the optimal MRI detection time to be 30 minutes after the probe administration. Discussion This method can be applied specifically to assess the level of macromolecular free radicals in vivo in a simple and stable manner, providing a pathway for a more comprehensive understanding of the role of free radicals in SAE.
Collapse
Affiliation(s)
- Hanrui Liu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Chengyong Ma
- West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Huayan Xu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Huan Zhang
- College of Chemistry and Materials Science, Northwest University, Xi’an, People’s Republic of China
| | - Rong Xu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Kun Zhang
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ran Sun
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Kuan Li
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Qihong Wu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Lingyi Wen
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Lizhi Zhang
- West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Lizhi Zhang, Department of Radiology, West China Hospital of Sichuan University, No. 37, Guoxue Road, Chengdu, Sichuan, 610041, People’s Republic of China, Email
| | - Yingkun Guo
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Correspondence: Yingkun Guo, Development and Related Diseases of Women and Children Key Laboratory, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan, 610041, People’s Republic of China, Tel +86+18180609256, Email
| |
Collapse
|
6
|
Ahmady A, Abu Samah NH. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. Int J Pharm 2021; 608:121037. [PMID: 34438009 DOI: 10.1016/j.ijpharm.2021.121037] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
Bioadhesive polymers offer versatility to medical and pharmaceutical inventions. The incorporation of such materials to conventional dosage forms or medical devices may confer or improve the adhesivity of the bioadhesive systems, subsequently prolonging their residence time at the site of absorption or action and providing sustained release of actives with improved bioavailability and therapeutic outcomes. For decades, much focus has been put on scientific works to replace synthetic polymers with biopolymers with desirable functional properties. Gelatine has been considered one of the most promising biopolymers. Despite its biodegradability, biocompatibility and unique biological properties, gelatine exhibits poor mechanical and adhesive properties, limiting its end-use applications. The chemical modification and blending of gelatine with other biomaterials are strategies proposed to improve its bioadhesivity. Here we discuss the classical approaches involving a variety of polymer blends and composite systems containing gelatine, and gelatine modifications via thiolation, methacrylation, catechol conjugation, amination and other newly devised strategies. We highlight several of the latest studies on these strategies and their relevant findings.
Collapse
Affiliation(s)
- Amina Ahmady
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Malaysia
| | - Nor Hayati Abu Samah
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Malaysia.
| |
Collapse
|
7
|
Wang J, Wei J. Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:460-467. [PMID: 28866188 DOI: 10.1016/j.msec.2017.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/12/2017] [Accepted: 06/22/2017] [Indexed: 01/16/2023]
Abstract
Interpenetrating polymer network (IPN) hydrogels composed of gelatin and hydroxypropyl cellulose (HPC) were prepared by successive enzymatic and chemical crosslinking approaches. The hydrogels displayed porous structure and the pore size decreased with the increase of HPC content. Due to the entanglement and interpenetrating between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum tensile and tear strengths of the IPN hydrogels reached 3.1 and 5.2MPa, respectively. The water vapor permeability of the IPN hydrogels was within the acceptable range to maintain appropriate moisture for wound healing. The cytotoxicity evaluation indicated that the IPN hydrogels exhibited no toxicity to fibroblast cells. In addition, the hydrogels were loaded with chloramphenicol by pre-soaking in drug solutions to evaluate drug-loading capacity and in vitro release behavior. It was found that the drug loaded hydrogels could act as drug delivery devices to create microbe free microenvironment, which was advantageous for wound healing.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Jun Wei
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
8
|
James J, Thomas GV, Pramoda K, Thomas S. Transport behaviour of aromatic solvents through styrene butadiene rubber/poly [methyl methacrylate] (SBR/PMMMA) interpenetrating polymer network (IPN) membranes. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|