1
|
Latiyan S, Kumar TSS, Doble M, Kennedy JF. Perspectives of nanofibrous wound dressings based on glucans and galactans - A review. Int J Biol Macromol 2023:125358. [PMID: 37330091 DOI: 10.1016/j.ijbiomac.2023.125358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Wound healing is a complex and dynamic process that needs an appropriate environment to overcome infection and inflammation to progress well. Wounds lead to morbidity, mortality, and a significant economic burden, often due to the non-availability of suitable treatments. Hence, this field has lured the attention of researchers and pharmaceutical industries for decades. As a result, the global wound care market is expected to be 27.8 billion USD by 2026 from 19.3 billion USD in 2021, at a compound annual growth rate (CAGR) of 7.6 %. Wound dressings have emerged as an effective treatment to maintain moisture, protect from pathogens, and impede wound healing. However, synthetic polymer-based dressings fail to comprehensively address optimal and quick regeneration requirements. Natural polymers like glucan and galactan-based carbohydrate dressings have received much attention due to their inherent biocompatibility, biodegradability, inexpensiveness, and natural abundance. Also, nanofibrous mesh supports better proliferation and migration of fibroblasts because of their large surface area and similarity to the extracellular matrix (ECM). Thus, nanostructured dressings derived from glucans and galactans (i.e., chitosan, agar/agarose, pullulan, curdlan, carrageenan, etc.) can overcome the limitations associated with traditional wound dressings. However, they require further development pertaining to the wireless determination of wound bed status and its clinical assessment. The present review intends to provide insight into such carbohydrate-based nanofibrous dressings and their prospects, along with some clinical case studies.
Collapse
Affiliation(s)
- Sachin Latiyan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - John F Kennedy
- Chembiotech Labs, Institute of Science and Technology, Kyrewood House, Tenbury Wells WR158FF, UK
| |
Collapse
|
2
|
Hafeez S, Islam A, Durrani AK, Butt MTZ, Rehmat S, Khurshid A, Khan SM. Fabrication of pectin-based stimuli responsive hydrogel for the controlled release of ceftriaxone. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Sabbagh F, Kim BS. Microneedles for transdermal drug delivery using clay-based composites. Expert Opin Drug Deliv 2022; 19:1099-1113. [DOI: 10.1080/17425247.2022.2119220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
4
|
Dierings de Souza EJ, Kringel DH, Guerra Dias AR, da Rosa Zavareze E. Polysaccharides as wall material for the encapsulation of essential oils by electrospun technique. Carbohydr Polym 2021; 265:118068. [PMID: 33966832 DOI: 10.1016/j.carbpol.2021.118068] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
Electrospinning is a versatile, inexpensive and reliable technique for the synthesis of nanometric fibers or particles from polymeric solutions, under a high voltage electric field. The use of natural polysaccharides such as starch, chitosan, pectin, alginate, pullulan, cellulose and dextran as polymeric materials allows the formation of biodegradable fibers and capsules. Bioactive compounds extracted from natural sources, such as essential oils, have been widely studied due to their antioxidant, antimicrobial and antifungal properties. The combination of natural polymers and the electrospinning technique allows the production of structures capable of incorporating these bioactive compounds, which are highly sensitive to degradation reactions. This review describes several approaches to the development of nanofibers and nanocapsules from polysaccharides and the possibility of incorporating hydrophobic compounds, such as essential oils. The review also discusses the use of electrosprayed products incorporated with essential oils for direct application in food or for use as active food packaging.
Collapse
Affiliation(s)
| | | | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
5
|
Ahmad S, Palvasha BA, Abbasi BBK, Nazir MS, Akhtar MN, Tahir Z, Abdullah MA. Preparation and Applications of Polysaccharide‐Based Composites. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Zhang G, Huang B, Zheng C, Chen Q, Fei P. Investigation of a Lipase-Catalyzed Reaction between Pectin and Salicylic Acid and Its Isomers and Evaluation of the Emulsifying Properties, Antioxidant Activities, and Antibacterial Activities of the Corresponding Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1234-1241. [PMID: 33301331 DOI: 10.1021/acs.jafc.0c06120] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study presents a method for modifying pectin with phenolic acids catalyzed by lipase in a two-phase system of water/tetrahydrofuran. Salicylic acid (SA) and its isomers, including m-hydroxybenzoic acid (MHBA) and p-hydroxybenzoic acid (PHBA), were grafted onto pectin, and the products were characterized via UV-vis, Fourier transform infrared spectroscopy (FTIR), and 1H NMR analyses to explore the reaction process and mechanism between pectin and the three phenolic acids. Results indicated that lipase played a dual role in the reaction, namely, catalyzing the hydrolysis of the methyl group in the aqueous phase and esterifying the carboxyl group of pectin with the phenolic hydroxyl group of the phenolic acids in tetrahydrofuran. The grafting ratio of SA-modified pectin, MHBA-modified pectin, and PHBA-modified pectin was 1.89, 10.58, and 20.32%, respectively, and it was affected by the position of phenolic hydroxyl. Moreover, the effects of phenolic acids on the emulsifying properties, antioxidant activities, and antibacterial activities of the native and modified pectins were evaluated. In several aspects, the emulsifying properties of the modified pectins were better than those of native pectin. Moreover, the grafting of phenolic acids only slightly affected the 1,1-diphenyl-2-picryl hydrazine (DPPH) clearance of the modified pectins but substantially improved their inhibition ratio in a β-carotene bleaching assay. Furthermore, the modified pectins exhibited better bacteriostatic activity against both Escherichia coli and Staphylococcus aureus than native pectin.
Collapse
Affiliation(s)
- Guoguang Zhang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Bingqing Huang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Chenmin Zheng
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Qiaoling Chen
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Peng Fei
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P. R. China
| |
Collapse
|
7
|
Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235136] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pectin was first dissolved in distilled water and blended with low contents of polyethylene oxide 2000 (PEO2000) as the carrier polymer to produce electrospun fibers. The electrospinning of the water solution of pectin at 9.5 wt% containing 0.5 wt% PEO2000 was selected as it successfully resulted in continuous and non-defected ultrathin fibers with the highest pectin content. However, annealing of the resultant pectin-based fibers, tested at different conditions, developed films with low mechanical integrity, high porosity, and also dark color due to their poor thermal stability. Then, to improve the film-forming process of the electrospun mats, two plasticizers, namely glycerol and polyethylene glycol 900 (PEG900), were added to the selected pectin solution in the 2–3 wt% range. The optimal annealing conditions were found at 150 °C with a pressure of 12 kN load for 1 min when applied to the electrospun pectin mats containing 5 wt% PEO2000 and 30 wt% glycerol and washed previously with dichloromethane. This process led to completely homogenous films with low porosity and high transparency due to a phenomenon of fibers coalescence. Finally, the selected electrospun pectin-based film was applied as an interlayer between two external layers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the electrospinning coating technology and the whole structure was annealed to produce a fully bio-based and biodegradable multilayer film with enhanced barrier performance to water vapor and limonene.
Collapse
|
8
|
Asama M, Hall A, Qi Y, Moreau B, Walthier H, Schaschwary M, Bristow B, Wang Q. Alternative foaming agents for topical treatment of ulcerative colitis. J Biomed Mater Res A 2018; 106:1448-1456. [PMID: 29314587 DOI: 10.1002/jbm.a.36324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
Approximately 907,000 Americans currently suffer from ulcerative colitis, a condition characterized by inflammation of the large intestine or rectum. Treatment of this disease often includes anti-inflammatory medication or immunosuppressants. Here foams are an attractive delivery platform, offering relatively high bioavailability, low systemic exposure, and improved patient comfort. However, the surfactants that generate these foams may adversely affect the diseased mucosa. Therefore, this project evaluated two alternative surfactants for use in topical drug delivery platforms: sodium caseinate and l-α-phosphatidylcholine. Both were compared to the biocompatible surfactant Pluronic® F-127 using stability and density tests, and biocompatibility tests performed on mini-guts. Sodium caseinate foams were less stable but denser than Pluronic® foams; however, they exhibited an unexpectedly low shelf-life. l-α-phosphatidylcholine was an unsuccessful primary foaming agent owing to poor foamability at low concentrations. Mini-gut growth rates were not significantly altered by surfactants, while morphology and an MTT assay identified Pluronic® as the most biocompatible surfactant at higher concentrations. These results clarify the possible challenges that the tested surfactants may present in topical delivery platforms and show the relevance of permeability to tissue-surfactant interaction tests. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1448-1456, 2018.
Collapse
Affiliation(s)
- Martin Asama
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Alex Hall
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Yijun Qi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Branden Moreau
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Heidi Walthier
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Matthew Schaschwary
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Blaine Bristow
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
9
|
Li X, Tu H, Huang M, Chen J, Shi X, Deng H, Wang S, Du Y. Incorporation of lysozyme-rectorite composites into chitosan films for antibacterial properties enhancement. Int J Biol Macromol 2017; 102:789-795. [DOI: 10.1016/j.ijbiomac.2017.04.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 11/30/2022]
|
10
|
Govindaraj D, Rajan M, Hatamleh AA, Munusamy MA. From waste to high-value product: Jackfruit peel derived pectin/apatite bionanocomposites for bone healing applications. Int J Biol Macromol 2017; 106:293-301. [PMID: 28782611 DOI: 10.1016/j.ijbiomac.2017.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 02/08/2023]
Abstract
Public requirements encouraged by the current asset framework drive industry to expand its general effectiveness by enhancing existing procedures or finding new uses for waste. Thus, the aim of this study was the isolation, fabrication, and characterization of pectin derived from jackfruit (Artocarpus heterophyllus) peels and the generation of hybrid of pectin (P)/apatite (HA) (P/HA) bionanocomposites. In this process, the natural pectin polymer derived from the peel of jackfruits was used in different concentrations for the fabrication of HA bionanocomposites. Characterization of the isolated pectin and bionanocomposites samples was performed with 1H NMR and 13C NMR, FTIR, XRD, SEM-EDX, and HR-TEM. Cytocompatibility, ALP, fibroblast stem cells, anti-inflammatory and cell adhesion testing of the fabricated bionanocomposites was showed good biocompatibility. Our results signify that the fabricated bionanocomposites might be applicable as bone graft materials.
Collapse
Affiliation(s)
- Dharman Govindaraj
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| | - Ashraf A Hatamleh
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Jin J, Tu H, Chen J, Cheng G, Shi X, Deng H, Li Z, Du Y. Rectorite-intercalated nanoparticles for improving controlled release of doxorubicin hydrochloride. Int J Biol Macromol 2017; 101:815-822. [DOI: 10.1016/j.ijbiomac.2017.03.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/18/2023]
|