1
|
Choque-Quispe D, Ligarda-Samanez CA, Choque-Quispe Y, Froehner S, Solano-Reynoso AM, Moscoso-Moscoso E, Carhuarupay-Molleda YF, Peréz-Salcedo R. Stability in Aqueous Solution of a New Spray-Dried Hydrocolloid of High Andean Algae Nostoc sphaericum. Polymers (Basel) 2024; 16:537. [PMID: 38399913 PMCID: PMC10892598 DOI: 10.3390/polym16040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
There is a growing emphasis on seeking stabilizing agents with minimal transformation, prioritizing environmentally friendly alternatives, and actively contributing to the principles of the circular economy. This research aimed to assess the stability of a novel spray-dried hydrocolloid from high Andean algae when introduced into an aqueous solution. Nostoc sphaericum freshwater algae were subject to atomization, resulting in the production of spray-dried hydrocolloid (SDH). Subsequently, suspension solutions of SDH were meticulously prepared at varying pH levels and gelling temperatures. These solutions were then stored for 20 days to facilitate a comprehensive evaluation of their stability in suspension. The assessment involved a multifaceted approach, encompassing rheological analysis, scrutiny of turbidity, sedimentation assessment, ζ-potential, and measurement of particle size. The findings from these observations revealed that SDH exhibits a dilatant behavior when in solution, signifying an increase in with higher shear rate. Furthermore, it demonstrates commendable stability when stored under ambient conditions. SDH is emerging as a potential alternative stabilizer for use in aqueous solutions due to its easy extraction and application.
Collapse
Affiliation(s)
- David Choque-Quispe
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (R.P.-S.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Carlos A. Ligarda-Samanez
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (R.P.-S.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Yudith Choque-Quispe
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Sandro Froehner
- Department of Environmental Engineering, Federal University of Parana, Curitiba 80010, Brazil;
| | - Aydeé M. Solano-Reynoso
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | | | - Ronald Peréz-Salcedo
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (R.P.-S.)
| |
Collapse
|
2
|
Choque-Quispe D, Ligarda-Samanez CA, Ramos-Pacheco BS, Solano-Reynoso AM, Quispe-Marcatoma J, Choque-Quispe Y, Peralta-Guevara DE, Martínez-Huamán EL, Correa-Cuba O, Masco-Arriola ML, Lechuga-Canal WJ, Montalvo Amanca F. Formulation of Novel Composite (Activated Nanoclay/Hydrocolloid of Nostoc sphaericum) and Its Application in the Removal of Heavy Metals from Wastewater. Polymers (Basel) 2022; 14:polym14142803. [PMID: 35890579 PMCID: PMC9324342 DOI: 10.3390/polym14142803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
The removal of heavy metals from wastewater is an environmental challenge which demands the use of environmentally friendly materials that promote a circular economy. This study aimed to apply a novel composite of an activated nanoclay/hydrocolloid in the removal of heavy metals from wastewater. A composite blended under pressure was prepared with spray-dried hydrocolloid derived from Nostoc sphaericum algae and activated nanoclay in an acid medium and 1M NaCl. The composite and components were analyzed through infrared (IR), X-ray (XR), ζ potential, cation exchange capacity (CEC), particle size, and SEM images. The composite was subjected to the adsorption of heavy metals (Pb, As, Zn, and Cd) at pH 4.5 and the removal percentage, kinetics, and adsorption isotherms were evaluated. It was observed that the activated nanoclay and the composite that presented a particle size of around 400 nm significantly increased (p-value < 0.05) the CEC, ζ potential, the functional groups, and chelating components, removing heavy metals above 99% for Pb, As 33%, Cd 15%, and Zn 10%. Adsorption kinetics was adjusted to the pseudo second-order model (R2 > 0.98), and the Langmuir and Freundlich models better represented the sorption isotherm at 20 °C. The formulated composite presents a good ability to remove heavy metals in wastewater.
Collapse
Affiliation(s)
- David Choque-Quispe
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (B.S.R.-P.); (D.E.P.-G.)
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Correspondence:
| | - Carlos A. Ligarda-Samanez
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (B.S.R.-P.); (D.E.P.-G.)
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Aydeé M. Solano-Reynoso
- Department of Environmental Engineering, Universidad Tecnológica de los Andes, Andahuaylas 03701, Peru;
| | - Justiniano Quispe-Marcatoma
- Faculty of Physical Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (J.Q.-M.); (F.M.A.)
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao 07041, Peru
| | - Yudith Choque-Quispe
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Diego E. Peralta-Guevara
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (B.S.R.-P.); (D.E.P.-G.)
| | - Edgar L. Martínez-Huamán
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Odilon Correa-Cuba
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Mery Luz Masco-Arriola
- Department of Chemical Engineering, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08000, Peru; (M.L.M.-A.); (W.J.L.-C.)
| | - Washington Julio Lechuga-Canal
- Department of Chemical Engineering, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08000, Peru; (M.L.M.-A.); (W.J.L.-C.)
| | - Fred Montalvo Amanca
- Faculty of Physical Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (J.Q.-M.); (F.M.A.)
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao 07041, Peru
| |
Collapse
|
3
|
Preliminary Characterization of a Spray-Dried Hydrocolloid from a High Andean Algae ( Nostoc sphaericum). Foods 2022; 11:foods11111640. [PMID: 35681390 PMCID: PMC9180270 DOI: 10.3390/foods11111640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
The search for new natural sources of hydrocolloids with stabilizing, thickening, and good binding capacity, from raw materials that are environmentally friendly and that contribute to the circular economy is a challenge for the food industry. The aim of the study was the preliminary characterization of a spray-dried hydrocolloid from high Andean algae Nostoc sphaericum. Four ecotypes of algae from Peruvian high Andean lagoons located above 4000 m were considered. The samples were collected in the period March−April 2021 and were subjected to a spray drying process in an aqueous medium. The characterization showed that the dehydrated nostoc ecotypes presented high protein and carbohydrate content, making it a potential material for direct use as a functional food for humans. The spray-dried product presented good stability for its use as a hydrocolloid, with zeta potential values (ζ), around 30 mV, evidencing the presence of -CO-, -OH, -COO-, and -CH groups, characteristic of polysaccharides, representing 40% of total organic carbon on average, giving it low water activity values and particle size at the nanometric level. Major minerals such as Ca (>277 mg/100 g), Mg (>19.7 mg/100 g), and Fe (>7.7 mg/100 g) were reported. Spray-dried nostoc is a hydrocolloid material with high potential for the food industry, with good nutritional content and techno-functional behavior.
Collapse
|
4
|
Okajima MK, Sornkamnerd S, Kaneko T. Development of Functional Bionanocomposites Using Cyanobacterial Polysaccharides. CHEM REC 2018. [PMID: 29543373 DOI: 10.1002/tcr.201700074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyanobacteria are regarded as very eco-friendly microreactors for the production of various biomolecules such as polysaccharides by fixing not only carbon but also nitrogen in water. Cyanobacterial polysaccharides having various functional groups such as hydroxyls, carboxyls, sulfates, etc. have the ability to interact with metals or inorganics, to create bionanocomposites. Sacran, a supergiant cyanobacterial anionic polysaccharide extracted from the extracellular matrix of Aphanothece sacrum which is mass-cultivated in freshwater, is mainly used to create functional bionanocomposites. Gel-type bionanocomposites of sacran with various metal cations are formed and showed photoresponsive functions. Metal recovery is performed from the sacran bionanocomposite gels. Sacran chains are complexed with multi-wall carbon nanotubes (MWCNT) to give viscose dispersion from which MWCNT bionanocomposites can be collected by electrophoresis. The MWCNT/sacran dispersion retains the capability of adsorbing various metal ions to form hardened hydrogel beads. Finally, natural inorganic sepiolite can be used for sacran bionanocomposites which show an efficient neodymium ion adsorption ability. Thus, cyanobacterial polysaccharides are useful for preparing eco-friendly and functional bionanocomposites with various hard materials.
Collapse
Affiliation(s)
- Maiko K Okajima
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Saranyoo Sornkamnerd
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|