1
|
Alfonsi S, Karunathasan P, Mamodaly-Samdjee A, Balathandayutham K, Lefevre S, Miranda A, Gallet O, Seyer D, Hindié M. Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts' Adhesion but Affected Their Behavior. J Funct Biomater 2023; 15:5. [PMID: 38276478 PMCID: PMC10817067 DOI: 10.3390/jfb15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The implantation of metallic orthopedic prostheses is increasingly common due to an aging population and accidents. There is a real societal need to implement new metal implants that combine durability, good mechanical properties, excellent biocompatibility, as well as affordable costs. Since the functionalization of low-cost 316L stainless steel substrates through the successive electrodeposition of a polypyrrole film (PPy) and a calcium phosphate deposit doped with silicon was previously carried out by our labs, we have also developed a bio-functional coating by electrodepositing or oxidating of fibronectin (Fn) coating. Fn is an extracellular matrix glycoprotein involved in cell adhesion and differentiation. Impacts of either electrodeposition or oxidation on the structure and functionality of Fn were first studied. Thus, electrodeposition is the technique that permits the highest deposition of fibronectin, compared to adsorption or oxidation. Furthermore, electrodeposition seems to strongly modify Fn conformation by the formation of intermingled long fibers, resulting in changes to the accessibility of the molecular probes tested (antibodies directed against Fn whole molecule and Fn cell-binding domain). Then, the effects of either electrodeposited Fn or oxidized Fn were validated by the resulting pre-osteoblast behavior. Electrodeposition reduced pre-osteoblasts' ability to remodel Fn coating on supports because of a partial modification of Fn conformation, which reduced accessibility to the cell-binding domain. Electrodeposited Fn also diminished α5 integrin secretion and clustering along the plasma membrane. However, the N-terminal extremity of Fn was not modified by electrodeposition as demonstrated by Staphylococcus aureus attachment after 3 h of culture on a specific domain localized in this region. Moreover, the number of pre-osteoblasts remains stable after 3 h culture on either adsorbed, oxidized, or electrodeposited Fn deposits. In contrast, mitochondrial activity and cell proliferation were significantly higher on adsorbed Fn compared with electrodeposited Fn after 48 h culture. Hence, electro-deposited Fn seems more favorable to pre-osteoblast early-stage behavior than during a longer culture of 24 h and 48 h. The electrodeposition of matrix proteins could be improved to maintain their bio-activity and to develop this promising, fast technique to bio-functionalize metallic implants.
Collapse
Affiliation(s)
- Séverine Alfonsi
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Pithursan Karunathasan
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Ayann Mamodaly-Samdjee
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Keerthana Balathandayutham
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Sarah Lefevre
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Anamar Miranda
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Olivier Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Damien Seyer
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| |
Collapse
|
2
|
Botamanenko DY, Reitenbach DW, Miller LM, Jarrold MF. Electrostatic Linear Ion Trap Optimization Strategy for High Resolution Charge Detection Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1731-1740. [PMID: 37466262 PMCID: PMC10842736 DOI: 10.1021/jasms.3c00177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Single ion mass measurements allow mass distributions to be recorded for heterogeneous samples that cannot be analyzed by conventional mass spectrometry. In charge detection mass spectrometry (CD-MS), ions are detected using a conducting cylinder coupled to a charge sensitive amplifier. For optimum performance, the detection cylinder is embedded in an electrostatic linear ion trap (ELIT) where trapped ions oscillate between end-caps that act as opposing ion mirrors. The oscillating ions generate a periodic signal that is analyzed by fast Fourier transforms. The frequency yields the m/z, and the magnitude provides the charge. With a charge precision of 0.2 elementary charges, ions can be assigned to their correct charge states with a low error rate, and the m/z resolving power determines the mass resolving power. Previously, the best mass resolving power achieved with CD-MS was 300. We have recently increased the mass resolving power to 700, through the better optimization of the end-cap potentials. To make a more dramatic improvement in the m/z resolving power, it is necessary to find an ELIT geometry and end-cap potentials that can simultaneously make the ion oscillation frequency independent of both the ion energy and ion trajectory (angular divergence and radial offset) of the entering ion. We describe an optimization strategy that allows these conditions to be met while also adjusting the signal duty cycle to 50% to maximize the signal-to-noise ratio for the charge measurement. The optimized ELIT provides an m/z resolving power of over 300 000 in simulations. Coupled with the high precision charge determination available with CD-MS, this will yield a mass resolving power of 300 000. Such a high mass resolving power will be transformative for the analysis of heterogeneous samples.
Collapse
Affiliation(s)
- Daniel Y Botamanenko
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
- Megadalton Solutions Inc., 3750 E Bluebird Lane, Bloomington, Indiana 47401
| | - David W Reitenbach
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
| | - Lohra M Miller
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
| |
Collapse
|
3
|
Jeong JY, Yang HT, Cho SH, Lee YR, Kim J, Kang MK, Hong J, Moon JH, Seo AN. Plasma cell myeloma initially diagnosed as light-chain deposition disease on liver biopsy: A case report and literature review. Medicine (Baltimore) 2023; 102:e33406. [PMID: 37000077 PMCID: PMC10063314 DOI: 10.1097/md.0000000000033406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
RATIONALE Light-chain deposition disease (LCDD) is a rare condition characterized by the abnormal deposition of monoclonal light chains (LCs) in multiple organs, leading to progressive organ dysfunction. Herein, we report a case of plasma cell myeloma initially diagnosed as LCDD on liver biopsy performed for prominent cholestatic hepatitis. PATIENT CONCERNS A 55-year-old Korean man complained of dyspepsia as the main symptom. On abdominal computed tomography performed at another hospital, the liver showed mildly decreased and heterogeneous attenuation with mild periportal edema. Preliminary liver function tests revealed abnormal results. The patient was treated for an unspecified liver disease; however, his jaundice gradually worsened, prompting him to visit our outpatient hepatology clinic for further evaluation. Magnetic resonance cholangiography revealed liver cirrhosis with severe hepatomegaly of unknown cause. A liver biopsy was performed for the diagnosis. Hematoxylin and eosin staining revealed diffuse extracellular amorphous deposits in perisinusoidal spaces with compressed hepatocytes. The deposits, which morphologically resembled amyloids, were not stained by Congo red but stained strongly positive for kappa LCs and weakly positive for lambda LCs. DIAGNOSES Therefore, the patient was diagnosed with LCDD. Further systemic examination revealed a plasma cell myeloma. INTERVENTIONS Fluorescence in situ hybridization, cytogenetics, and next-generation sequencing tested in bone marrow showed no abnormalities. The patient initially received bortezomib/lenalidomide/dexamethasone as the treatment regimen for plasma cell myeloma. OUTCOMES However, he died shortly thereafter because of coronavirus disease 2019 complications. LESSONS This case demonstrates that LCDD may present with sudden cholestatic hepatitis and hepatomegaly, and may be fatal if patients do not receive appropriate and timely treatment because of delayed diagnosis. Liver biopsy is useful for the diagnosis of patients with liver disease of unknown etiology.
Collapse
Affiliation(s)
- Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Hyeon Tae Yang
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Seung Hyun Cho
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jinhee Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Min Kyu Kang
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jihoon Hong
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Joon Ho Moon
- Department of Hematology/Oncology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| |
Collapse
|
4
|
Tsirkou A, Kaczorowski F, Verdurand M, Raffoul R, Pansieri J, Quadrio I, Chauveau F, Antoine R. Charge detection mass spectrometry on human-amplified fibrils from different synucleinopathies. Chem Commun (Camb) 2022; 58:7192-7195. [PMID: 35670578 DOI: 10.1039/d2cc00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyloid fibrils are self-assembled mesoscopic protein aggregates, which can accumulate to form deposits or plaques in the brain. In vitro amplification of fibrils can be achieved with real-time quaking-induced conversion (RT-QuIC). However, this emerging technique would benefit from a complementary method to assess structural properties of the amplification products. This work demonstrates the feasibility of nanospray-charge-detection-mass-spectrometry (CDMS) performed on α-synuclein (αSyn) fibrils amplified from human brains with Parkinson's disease (PD) or Dementia with Lewy bodies (DLB) and its synergistic combination with RT-QuIC.
Collapse
Affiliation(s)
- Aikaterini Tsirkou
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.
| | - Flora Kaczorowski
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, 69677 BRON Cedex, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France.,Univ Lyon, Centre de Recherche en Neurosciences de Lyon, Equipe BIORAN, Inserm U1028 - CNRS UMR5292, Université Claude Bernard Lyon 1, Groupement Hospitalier Est - CERMEP, 69677 BRON Cedex, France.
| | - Mathieu Verdurand
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, 69677 BRON Cedex, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France.,Univ Lyon, Centre de Recherche en Neurosciences de Lyon, Equipe BIORAN, Inserm U1028 - CNRS UMR5292, Université Claude Bernard Lyon 1, Groupement Hospitalier Est - CERMEP, 69677 BRON Cedex, France.
| | - Rana Raffoul
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.
| | - Jonathan Pansieri
- Oxford University, Nuffield Department of Clinical Neurosciences, Oxford University, UK
| | - Isabelle Quadrio
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, 69677 BRON Cedex, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France.,Univ Lyon, Centre de Recherche en Neurosciences de Lyon, Equipe BIORAN, Inserm U1028 - CNRS UMR5292, Université Claude Bernard Lyon 1, Groupement Hospitalier Est - CERMEP, 69677 BRON Cedex, France.
| | - Fabien Chauveau
- Univ Lyon, Centre de Recherche en Neurosciences de Lyon, Equipe BIORAN, Inserm U1028 - CNRS UMR5292, Université Claude Bernard Lyon 1, Groupement Hospitalier Est - CERMEP, 69677 BRON Cedex, France.
| | - Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.
| |
Collapse
|
5
|
Abstract
Charge detection mass spectrometry (CDMS) is a single-particle technique where the masses of individual ions are determined from simultaneous measurement of their mass-to-charge ratio (m/z) and charge. Masses are determined for thousands of individual ions, and then the results are binned to give a mass spectrum. Using this approach, accurate mass distributions can be measured for heterogeneous and high-molecular-weight samples that are usually not amenable to analysis by conventional mass spectrometry. Recent applications include heavily glycosylated proteins, protein complexes, protein aggregates such as amyloid fibers, infectious viruses, gene therapies, vaccines, and vesicles such as exosomes.
Collapse
Affiliation(s)
- Martin F Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47404, United States
| |
Collapse
|
6
|
Wang L, Gong X, Qi G, Li Y, Zhang K, Gao YH, Wang D, Cao H, Yang Z. Self-assembling and cellular distribution of a series of transformable peptides. J Mater Chem B 2022; 10:3886-3894. [DOI: 10.1039/d1tb02814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformable peptides (TPs) are biomedical materials with unique structures and diverse functionalities that have drawn great interest in material science and nanomedicine. Here, we design a series of TPs with...
Collapse
|
7
|
Niemann S, Nguyen MT, Eble JA, Chasan AI, Mrakovcic M, Böttcher RT, Preissner KT, Roßlenbroich S, Peters G, Herrmann M. More Is Not Always Better-the Double-Headed Role of Fibronectin in Staphylococcus aureus Host Cell Invasion. mBio 2021; 12:e0106221. [PMID: 34663090 PMCID: PMC8524341 DOI: 10.1128/mbio.01062-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
While Staphylococcus aureus has classically been considered an extracellular pathogen, these bacteria are also capable of being taken up by host cells, including nonprofessional phagocytes such as endothelial cells, epithelial cells, or osteoblasts. The intracellular S. aureus lifestyle contributes to infection development. The predominant recognition and internalization pathway appears to be the binding of the bacteria via a fibronectin bridge to the α5β1-integrin on the host cell membrane, followed by phagocytosis. Although osteoblasts showed high expression of α5β1-integrin and fibronectin, and bacteria adhered to osteoblasts to a high proportion, here we demonstrate by internalization assays and immunofluorescence microscopy that S. aureus was less engulfed in osteoblasts than in epithelial cells. The addition of exogenous fibronectin during the infection of cells with S. aureus resulted in an increased uptake by epithelial cells but not by osteoblasts. This contrasts with the previous conception of the uptake mechanism, where high expression of integrin and fibronectin would promote the bacterial uptake into host cells. Extracellular fibronectin surrounding osteoblasts, but not epithelial cells, is organized in a fibrillary network. The inhibition of fibril formation, the short interfering RNA-mediated reduction of fibronectin expression, and the disruption of the fibronectin-fibril meshwork all resulted in a significant increase in S. aureus uptake by osteoblasts. Thus, the network of fibronectin fibrils appears to strongly reduce the uptake of S. aureus into a given host cell, indicating that the supramolecular structure of fibronectin determines the capacity of particular host cells to internalize the pathogen. IMPORTANCE Traditionally, Staphylococcus aureus has been considered an extracellular pathogen. However, among other factors, the frequent failure of antimicrobial therapy and the ability of the pathogen to cause recurrent disease have established the concept of eukaryotic invasion of the pathogen, thereby evading the host's immune system. In the current model of host cell invasion, bacteria initially bind to α5β1 integrin on the host cell side via a fibronectin bridge, which eventually leads to phagocytosis of S. aureus by host cells. However, in this study, we demonstrate that not the crude amount but the supramolecular structure of fibronectin molecules deposited on the eukaryotic cell surface plays an essential role in bacterial uptake by host cells. Our findings explain the large differences of S. aureus uptake efficacy in different host cell types as well as in vivo differences between courses of bacterial infections and the localization of bacteria in different clinical settings.
Collapse
Affiliation(s)
- Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Minh-Thu Nguyen
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Achmet I. Chasan
- Institute of Immunology, University of Münster, Münster, Germany
| | - Maria Mrakovcic
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
| | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Klaus T. Preissner
- Kerckhoff-Herzforschungsinstitut, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Steffen Roßlenbroich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
8
|
Yasir S, Rech K, Chen E, Torbenson MS. Amyloid-like Fibronectin Deposits in the Liver: A Novel Morphologic Finding. Am J Surg Pathol 2021; 45:205-208. [PMID: 32925193 PMCID: PMC7796990 DOI: 10.1097/pas.0000000000001585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amyloid deposits in the liver are recognized by their hematoxylin and eosin (H&E) findings, consisting of acellular eosinophilic deposits in various compartments of the liver parenchyma, including the stroma, vessels, and rarely the hepatocytes. H&E findings that suggest amyloid are then confirmed by Congo red stains and subtyped when clinically needed. Two cases are reported with sinusoidal deposits of acellular material that closely mimicked amyloid on H&E, but were Congo red negative. Mass spectrometry-based proteomic analysis identified the material as fibronectin. In 1 case, the deposits were located in the sinusoids of a well-differentiated hepatocellular carcinoma and in 1 case in the sinusoids of a benign liver.
Collapse
Affiliation(s)
- Saba Yasir
- Department of laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Karen Rech
- Department of laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Eric Chen
- Department of laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
9
|
He J, Becares ER, Thulstrup PW, Gamon LF, Pedersen JN, Otzen D, Gourdon P, Davies MJ, Hägglund P. Peroxynitrous acid (ONOOH) modifies the structure of anastellin and influences its capacity to polymerize fibronectin. Redox Biol 2020; 36:101631. [PMID: 32807731 PMCID: PMC7364157 DOI: 10.1016/j.redox.2020.101631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 11/27/2022] Open
Abstract
Anastellin (AN), a fragment of the first type III module in fibronectin (FN), initiates formation of superfibronectin, a polymer which resembles the native cell-derived fibrillar FN found in the extracellular matrix of many tissues, but which displays remarkably different functional properties. Here we demonstrate that exposure of AN to the biologically-important inflammatory oxidant, peroxynitrous acid (ONOOH), either as a bolus or formed at low levels in a time-dependent manner from SIN-1, impairs the capability of AN to polymerize FN. In contrast, exposure of FN to ONOOH does not seem to affect superfibronectin formation to the same extent. This oxidant-induced loss-of-function in AN occurs in a dose-dependent manner, and correlates with structural perturbations, loss of the amino acid tyrosine and tryptophan, and dose-dependent formation of modified amino acid side-chains (3-nitrotyrosine, di-tyrosine and 6-nitrotryptophan). Reagent ONOOH also induces formation of oligomeric species which decrease in the presence of bicarbonate, whereas SIN-1 mainly generates dimers. Modifications were detected at sub-stoichiometric (0.1-fold), or greater, molar excesses of oxidant compared to AN. These species have been localized to specific sites by peptide mass mapping. With high levels of oxidant (>100 times molar excess), ONOOH also induces unfolding of the beta-sheet structure of AN, thermal destabilization, and formation of high molecular mass aggregates. These results have important implications for the understanding of FN fibrillogenesis in vivo, and indicates that AN is highly sensitive to pathophysiological levels of oxidants such as ONOOH.
Collapse
Affiliation(s)
- Jianfei He
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Ramos Becares
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Luke F Gamon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Antoine R. Weighing synthetic polymers of ultra-high molar mass and polymeric nanomaterials: What can we learn from charge detection mass spectrometry? RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8539. [PMID: 31353622 DOI: 10.1002/rcm.8539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Advances in soft ionization techniques for mass spectrometry (MS) of polymeric materials make it possible to determine the masses of intact molecular ions exceeding megadaltons. Interfacing MS with separation and fragmentation methods has additionally led to impressive advances in the ability to structurally characterize polymers. Even if the gap to the megadalton range has been bridged by MS for polymers standards, the MS-based analysis for more complex polymeric materials is still challenging. Charge detection mass spectrometry (CDMS) is a single-molecule method where the mass and the charge of each ion are directly determined from individual measurements. The entire molecular mass distribution of a polymer sample can be thus accurately measured. Described in this perspective paper is how molecular weight distribution as well as charge distribution can provide new insights into the structural and compositional studies of synthetic polymers and polymeric nanomaterials in the megadalton to gigadalton range of molecular weight. The recent multidimensional CDMS studies involving couplings with separation and dissociation techniques will be presented. And, finally, an outlook for the future avenues of the CDMS technique in the field of synthetic polymers of ultra-high molar mass and polymeric nanomaterials will be provided.
Collapse
Affiliation(s)
- Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, F-69622, Lyon, France
| |
Collapse
|
11
|
Zhang K, Yang PP, He PP, Wen SF, Zou XR, Fan Y, Chen ZM, Cao H, Yang Z, Yue K, Zhang X, Zhang H, Wang L, Wang H. Peptide-Based Nanoparticles Mimic Fibrillogenesis of Laminin in Tumor Vessels for Precise Embolization. ACS NANO 2020; 14:7170-7180. [PMID: 32407069 DOI: 10.1021/acsnano.0c02110] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer therapeutic strategies based on angiogenesis attract great attention from fundamental and clinical research. Blocking oxygen and nutrition supply to tumor cells could inhibit the growth of tumors based on occlusion of blood vessels in the tumor. Herein, we report a dual-responsive peptide-based nanoparticle, mimicking the laminin fibrillogenesis specifically and highly efficiently in tumor vessels, resulting in the blockage of tumor vessels and the growth inhibition of tumors. The laminin mimic peptide (LMMP) is designed with a fibrillation sequence, a pH-responsive sequence, and a targeting sequence. The LMMP in nanoformulations is delivered to blood vessels in the tumors, where the microenvironment (pH and microthrombus) enable LMMP to process laminin fibrillogenesis, constructing fibrous networks. The laminin-like fibrous networks capture red blood cells etc., forming occlusion specifically in the tumor blood vessels to inhibit the growth of the tumor.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Ping-Ping He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Shi-Fang Wen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Xiao-Ran Zou
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yu Fan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Zi-Ming Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Hui Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhou Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hua Zhang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
12
|
TLR3 agonists induce fibronectin aggregation by activated astrocytes: a role of pro-inflammatory cytokines and fibronectin splice variants. Sci Rep 2020; 10:532. [PMID: 31953424 PMCID: PMC6969115 DOI: 10.1038/s41598-019-57069-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/21/2019] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system which eventually results in axonal loss mainly due to failure of remyelination. Previously we have shown that the persistent presence of stable astrocyte-derived fibronectin aggregates in MS lesions impairs OPC differentiation, and thereby remyelination. Here we set out to discern whether and, if so, how inflammatory mediators as present in MS lesions trigger astrocytes to form fibronectin aggregates. Our findings revealed that in slice cultures only upon demyelination, the TLR3 agonist Poly(I:C) evoked astrocytes to form fibronectin aggregates. Consistently, pro-inflammatory cytokine-pretreated astrocytes were more susceptible to Poly(I:C)-induced fibronectin aggregation, indicating that astrocytes form fibronectin aggregates upon a double hit by inflammatory mediators. The underlying mechanism involves disrupted fibronectin fibrillogenesis at the cell surface as a result of a cytokine-induced increase in relative mRNA levels of EIIIApos-Fn over EIIIBpos-Fn and a Poly(I:C)-mediated decrease in integrin affinity. Remarkably, fibronectin aggregation is exacerbated by white matter astrocytes compared to grey matter astrocytes, which may be a reflection of higher expression levels of EIIIApos-fibronectin in white matter astrocytes. Hence, interfering with alternative fibronectin splicing and/or TLR3-mediated signaling may prevent fibronectin aggregation and overcome remyelination failure in MS lesions.
Collapse
|
13
|
Krüger JP, Hondke S, Lau S, Endres M. Characterization of plasma fibronectin for migration, proliferation, and differentiation on human articular chondrocytes. J Tissue Eng Regen Med 2018; 13:537-545. [PMID: 30552734 DOI: 10.1002/term.2787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/06/2018] [Accepted: 12/06/2018] [Indexed: 11/07/2022]
Abstract
Plasma fibronectin (pFN) plays a crucial role in wound healing by binding to integrins and inducing cell migration. It is known to induce the migration and proliferation of mesenchymal progenitor cells in vitro, which play a key role during microfracture in cartilage repair. Endogenous chondrocytes from the native cartilage of the defect rim might aid in cartilage repair. In this study, the effect of pFN on proliferation, migration, and differentiation was tested on human articular chondrocytes. Results showed that treatment with pFN increased the migration of chondrocytes in a range of 1-30 μg/ml as tested with no effect on proliferation. TGFβ3-induced chondrogenesis was not affected by pFN. Especially, gene expression of matrix metalloproteinases was not increased by pFN. Plasma FN fragmentation due to storage conditions could be excluded by SDS-PAGE. Moreover, bioactivity of pFN did not alter during storage at 4°C and 40°C for up to 14 days. Taken together, pFN induces the migration but not proliferation of human articular chondrocytes with no inhibitory effect on chondrogenic differentiation. Additionally, no loss of activity or fragmentation of pFN was observed after lyophilization and storage, making pFN an interesting bioactive factor for chondrocyte recruitment.
Collapse
Affiliation(s)
| | | | - Skadi Lau
- TransTissue Technologies GmbH, Berlin, Germany
| | | |
Collapse
|
14
|
Mezzenga R, Mitsi M. The Molecular Dance of Fibronectin: Conformational Flexibility Leads to Functional Versatility. Biomacromolecules 2018; 20:55-72. [PMID: 30403862 DOI: 10.1021/acs.biomac.8b01258] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fibronectin, a large multimodular protein and one of the major fibrillar components of the extracellular matrix, has been the subject of study for many decades and plays critical roles in embryonic development and tissue homeostasis. Moreover, fibronectin has been implicated in the pathology of many diseases, including cancer, and abnormal depositions of fibronectin have been identified in a number of amyloid and nonamyloid lesions. The ability of fibronectin to carry all these diverse functionalities depends on interactions with a large number of molecules, including adhesive and signaling cell surface receptors, other components of the extracellular matrix, and growth factors and cytokines. The regulation and integration of such large number of interactions depends on the modular architecture of fibronectin, which allows a large number of conformations, exposing or destroying different binding sites. In this Review, we summarize the current knowledge regarding the conformational flexibility of fibronectin, with an emphasis on how it regulates the ability of fibronectin to interact with various signaling molecules and cell-surface receptors and to form supramolecular assemblies and fibrillar structures.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- Laboratory of Food and Soft Materials , ETH Zurich , 8092 Zurich , Switzerland
| | - Maria Mitsi
- Laboratory of Food and Soft Materials , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
15
|
Fibronectin amyloid-like aggregation alters its extracellular matrix incorporation and promotes a single and sparsed cell migration. Exp Cell Res 2018; 371:104-121. [PMID: 30076804 DOI: 10.1016/j.yexcr.2018.07.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/05/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022]
Abstract
Fibronectin (Fn) is an extracellular matrix (ECM) multifunctional glycoprotein essential for regulating cells behaviors. Within ECM, Fn is found as polymerized fibrils. Apart from fibrils, Fn could also form other kind of supramolecular assemblies such as aggregates. To gain insight into the impact of Fn aggregates on cell behavior, we generated several Fn oligomeric assemblies. These assemblies displayed various amyloid-like properties but were not cytotoxic. In presence of the more amyloid-like structured assemblies of Fn, the cell-ECM networks were altered and the cell shapes shifted toward extended mesenchymal morphologies. Additionnaly, the Fn amyloid-like aggregates promoted a single-cell and sparsed migration of SKOV3 cancer cells, which was associated with a relocalization of αv integrins from plasma membrane to perinuclear vesicles. These data pointed out that the features of supramolecular Fn assemblies could represent a higher level of fine-tuning cell phenotype, and especially migration of cancer cells.
Collapse
|