1
|
Li J, Yue Y, Lu Z, Hu Z, Tong Y, Yang L, Ji G, Liu P. Comparative sensitivity of A-type and B-type starch crystals to ultrahigh magnetic fields. Int J Biol Macromol 2024; 277:134552. [PMID: 39116966 DOI: 10.1016/j.ijbiomac.2024.134552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In this study, maize starch (A-type) and potato starch (B-type) were treated with ultrahigh magnetic fields (UMF) of different intensities (5 T and 15 T) to investigate their sensitivity to UMF by measuring changes in their structure and rheological properties. The results indicate that the crystallinity of A-type starch significantly decreases, reaching a minimum of 20.01 % at 5 T. In contrast, the crystallinity of B-type starch significantly increases, peaking at 21.17 % at 15 T, accompanied by a brighter polarized cross and a more perfect crystal structure. Additionally, B-type starch exhibited a significant increase in double helix content (from 32.67 % to 42.07 %), branching degree (from 1.96 % to 3.84 %), and R1022/995 (from 0.803 to 0.519), compared to A-type starch. B-type starch also showed a greater propensity for cross-linking reactions forming OCOR groups (from 0 % to 6.81 %), and its enthalpy change (∆H) increased substantially (from 19.28 J/g to 31.70 J/g), indicating a marked enhancement in thermal stability. Furthermore, the average hydrodynamic radius (Rh) decreased more for B-type starch, reflecting an increase in gel strength. These findings demonstrate that B-type starch is more sensitive to UMF than A-type starch. This study provides foundational data on the effects of UMF treatment on different crystalline starches, aiming to explore its potential applications in food and industrial fields.
Collapse
Affiliation(s)
- Jingjing Li
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Yonggang Yue
- China Inner Mongolia EHV Power Supply Bureau, Hohhot 010080, China; State Key Laboratory of Electrical Insulation and Power Equipment (Xi'an Jiaotong University), Xi'an 710049, Shanxi Province, China
| | - Zhijian Lu
- State Key Laboratory of Electrical Insulation and Power Equipment (Xi'an Jiaotong University), Xi'an 710049, Shanxi Province, China
| | - Ziang Hu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Yue Tong
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Lanjun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment (Xi'an Jiaotong University), Xi'an 710049, Shanxi Province, China.
| | - Guojun Ji
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China.
| | - Peiling Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore.
| |
Collapse
|
2
|
Sohn JS, Choi YE, Choi JS. Designing starch-based fenofibrate formulations using the melting method. Int J Biol Macromol 2024; 272:132903. [PMID: 38848840 DOI: 10.1016/j.ijbiomac.2024.132903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Fenofibrate (FNF) is used to treat hyperlipidemia. However, FNF is a poorly water-soluble drug, and the dosage of commercial products is relatively high at 160 mg in a Lipidil® tablet. Therefore, this study aimed to develop an FNF-solid dispersion (SD) that solubilizes and stabilizes FNF. The melting method that uses the low melting point of FNF was employed. The dissolution percentage of FNF in the optimal formulation (SD2) increased by 1.2-, 1.3-, and 1.3-fold at 5 min compared to that of Lipidil® and increased by 2.0-, 2.1-, and 2.0-fold compared to the pure FNF in pH 1.2 media, distilled water, and pH 6.8 buffer, which included 0.025 M sodium lauryl sulfate, respectively. The SD2 formulation showed a dissolution percentage of nearly 100 % in all dissolution media after 60 min. The physicochemical properties of the SD2 formulation exhibited slight changes in the melting point and crystallinity of FNF. Moreover, the stability of the SD2 formulation was maintained for six months. In particular, it was challenging to secure stability when starch#1500 was excluded from the SD2 formulation. In conclusion, the dissolution percentage of FNF in the SD2 formulation was improved owing to the weak binding force between FNF and the excipients, stability was secured, and favorable results are expected in future animal experiments.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- Division of Interdisciplinary Studies, Chosun University, Ph.D, Associate Professor, Gwangju 61452, Republic of Korea
| | - Ye Eun Choi
- School of Medicine, St. George's University, Student, West Indies, Grenada
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, Ph.D, Assistant Professor, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|
3
|
Jha S, Sarkhel S, Saha S, Sahoo B, Kumari A, Chatterjee K, Mazumder PM, Sarkhel G, Mohan A, Roy A. Expanded porous-starch matrix as an alternative to porous starch granule: Present status, challenges, and future prospects. Food Res Int 2024; 175:113771. [PMID: 38129003 DOI: 10.1016/j.foodres.2023.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Exposing the hydrated-soft-starch matrix of intact grain or reconstituted flour dough to a high-temperature-short-time (HTST) leads to rapid vapor generation that facilitates high-pressure build-up in its elastic matrix linked to large deformation and expansion. The expanded starch matrix at high temperatures dries up quickly by flash vaporization of water, which causes loss of its structural flexibility and imparts a porous and rigid structure of the expanded porous starch matrix (EPSM). EPSM, with abundant pores in its construction, offers adsorptive effectiveness, solubility, swelling ability, mechanical strength, and thermal stability. It can be a sustainable and easy-to-construct alternative to porous starch (PS) in food and pharmaceutical applications. This review is a comparative study of PS and EPSM on their preparation methods, structure, and physicochemical properties, finding compatibility and addressing challenges in recommending EPSM as an alternative to PS in adsorbing, dispersing, stabilizing, and delivering active ingredients in a controlled and efficient way.
Collapse
Affiliation(s)
- Shipra Jha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Sreyajit Saha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Gautam Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Anand Mohan
- Department of Food Science & Technology, University of Georgia, Athens, GA 30602, USA
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India.
| |
Collapse
|
4
|
Zhang T, Yue Y, Hou M, Tong Y, Lu Z, Yang L, Liu P. Oxidation and ordering of fine structure of corn starch under an ultrahigh magnetic field. Carbohydr Polym 2022; 297:120029. [DOI: 10.1016/j.carbpol.2022.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022]
|
5
|
Zhang Y, Song Q, Tian Y, Zhao G, Zhou Y. Insights into biomacromolecule-based alcogels: A review on their synthesis, characteristics and applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Jadhav NV, Pawar MA, Vavia PR. Pickering Dry Emulsion System for Improved Oral Delivery of Fenofibrate. AAPS PharmSciTech 2022; 23:168. [PMID: 35715710 DOI: 10.1208/s12249-022-02292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/24/2022] [Indexed: 11/30/2022] Open
Abstract
The current study reports a Pickering dry emulsion (PDE) system for improved oral delivery of fenofibrate, a poorly water-soluble model drug. The silica nanoparticles were modified by surface modifiers and explored as a stabilizer for emulsion. The wetting property of modified silica nanoparticles was evaluated by contact angle study. Emulsion was spray-dried to obtain PDE. PDE was evaluated for particle size analysis, drug loading, TGA, DSC, XRPD, FEG-SEM, in vitro dissolution study, and in vivo pharmacodynamic study. The particle size of liquid emulsion was found within the range of 0.3-0.6 μm; after spray drying, the particles agglomerated and exhibited an increase in particle size (1.5 μm). The high drug loading (13% w/w) was found in PDE. DSC and XRD study confirmed the amorphous form of fenofibrate. SEM study showed the formation of a spherical porous microcapsule structure. In vitro dissolution exhibited significant enhancement in drug release for the PDE system as compared to plain fenofibrate. The PDE significantly lowered serum lipid level as compared to plain fenofibrate in a Triton-based hypercholesterolemia model in rats, which ultimately confirmed the enhancement in bioavailability. Thus, the PDE system has good potential in the drug delivery area.
Collapse
Affiliation(s)
- Nitin V Jadhav
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Manoj A Pawar
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Pradeep R Vavia
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
7
|
Sathyan S, Nisha P. Optimization and Characterization of Porous Starch from Corn Starch and Application Studies in Emulsion Stabilization. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Tran BN, Van Pham Q, Tran BT, Thien Le G, Dao AH, Tran TH, Nguyen CN. Supercritical CO2 impregnation approach for enhancing dissolution of fenofibrate by adsorption onto high-surface area carriers. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Gupta B, Dalal P, Rao R. Cyclodextrin decorated nanosponges of sesamol: Antioxidant, anti-tyrosinase and photostability assessment. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Novel pulsed oxygen plasma mediated surface hydrophılizatıon of ritonavır for the enhancement of wettability and solubility. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Kumar S, Prasad M, Rao R. Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: Formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111605. [PMID: 33321649 DOI: 10.1016/j.msec.2020.111605] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Clobetasol propionate (CP), a superpotent topical corticosteroid, holds great promise for psoriasis treatment. However, common side effects like skin atrophy, steroidal acne, hypopigmentation and allergic contact dermatitis associated with it, hamper its utility for topical application. Taking this into consideration, the current work was aimed to fabricate CP loaded cyclodextrin nanosponge (CDNS) based hydrogel, to alleviate the aforementioned side effects, while controlling drug release. Nanosponges were crafted employing β-cyclodextrin (polymer) and diphenyl carbonate (cross linker) and evaluated appropriately. The selected formulation augmented 45 folds water solubility, with respect to pure CP. The formulation possessed entrapment efficiency (56.33 ± 0.94%), particle size (194.27 ± 49.24 nm) with polydispersitive index (0.498 ± 0.095), surface charge (-21.83 ± 0.95 mV) and drug release (86.25 ± 0.28%). Selected CP-CDNS were found crystalline and uniform in size. Further, in vitro cell viability analysis has been performed using THP1 cells to evaluate cytocompatibility of CP nanosponges. The chosen CP nanosponges were then embedded into Carbopol hydrogel, and characterized for rheological behaviour, spreadability, and texture profile. The developed nanoformulations were also assessed in vivo using mouse tail model. Histological and biochemical assessments have been conducted to explore their antipsoriatic activity via oxidative stress biomarkers. The degree of orthokeratosis was observed remarkably (p < 0.001) amplified by CP-CDNS14 hydrogel as compared to untreated group (control) and CP hydrogel. In addition, drug activity and change in epidermal thickness were found significant. Our findings altogether advocated the profound potential of prepared CP nanogel in the topical treatment of psoriasis, with improved patient compliance.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, Haryana, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| |
Collapse
|
12
|
Preparation, characterization, physicochemical property and potential application of porous starch: A review. Int J Biol Macromol 2020; 148:1169-1181. [DOI: 10.1016/j.ijbiomac.2020.02.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Accepted: 02/06/2020] [Indexed: 11/20/2022]
|
13
|
Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: A novel and simple colon targeted drug delivery system. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.04.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Choi JS, Lee SE, Jang WS, Byeon JC, Park JS. Solid dispersion of dutasteride using the solvent evaporation method: Approaches to improve dissolution rate and oral bioavailability in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:387-396. [DOI: 10.1016/j.msec.2018.04.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/02/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
|
15
|
Bai A, Wu C, Liu X, Lv H, Xu X, Cao Y, Shang W, Hu L, Liu Y. Development of a tin oxide carrier with mesoporous structure for improving the dissolution rate and oral relative bioavailability of fenofibrate. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2129-2138. [PMID: 30022811 PMCID: PMC6044342 DOI: 10.2147/dddt.s166989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Biopharmaceutics classification system class II drugs have low solubility, which limits their extent and speed of absorption after oral administration. Over the years, mesoporous materials have been widely used to increase the dissolution rate and oral relative bioavailability of poorly water-soluble drugs. Objectives In order to improve the dissolution rate and increase oral relative bioavailability of the poorly water-soluble drugs, a tin oxide carrier (MSn) with a mesoporous structure was successfully synthesized. Methods In this study, MSn was synthesized using mesoporous silica material (SBA-15) as the template. Fenofibrate (FNB) was adsorbed into the channels of MSn by an adsorption method. Characterizations of the pure FNB, MSn, physical mixture of the drug and MSn (PM; 1:1) and FNB-loaded MSn (FNB-MSn) samples were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, powder X-ray diffractometer (PXRD), differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy. Cytotoxicity assay (MTT) was used to evaluate the cytotoxicity of MSn. In vitro dissolution studies were performed to investigate the dissolution rate of FNB-MSn. In vivo pharmacokinetic studies were used to investigate the changes of plasma drug concentrations of FNB-MSn tablets and commercial FNB tablets in rabbits. Results Detailed characterization showed that FNB in the channels of MSn was present in an amorphous state. The in vitro release tests demonstrated that MSn with a good biocompatibility could effectively enhance the dissolution rate of FNB. Pharmacokinetic results indicated that MSn significantly increased the oral relative bioavailability of FNB. Conclusion MSn can be regarded as a promising carrier for an oral drug delivery system.
Collapse
Affiliation(s)
- Andi Bai
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Chao Wu
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Xuan Liu
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Huiling Lv
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Xiaoyan Xu
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Yue Cao
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Wenjing Shang
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Lili Hu
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Ying Liu
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| |
Collapse
|