1
|
Siritapetawee J, Limphirat W, Pakawanit P, Phoovasawat C. Application of Bacillus sp. protease in the fabrication of silver/silver chloride nanoparticles in solution and cotton gauze bandages. Biotechnol Appl Biochem 2020; 69:20-29. [PMID: 33179817 DOI: 10.1002/bab.2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/05/2020] [Indexed: 11/07/2022]
Abstract
Silver (Ag)/silver chloride (AgCl) nanoparticles have been used worldwide for their antimicrobial activity. Proteases play an important role in many physiological processes during wound healing. Therefore, the aim of this study was to fabricate silver-type nanoparticles exhibiting protease activity for medical applications such as wound healing and dressings. The Ag/AgCl nanoparticles were fabricated using Bacillus sp. protease and visible light activation. The size of the fabricated nanoparticles was estimated to be 35.29 ± 6.43 nm. The nanoparticles were coated on a cotton gauze bandage using immersion and ultrasonication. Scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed that the nanoparticles could be used to coat the gauze bandage. Synchrotron radiation X-ray tomographic microscopy indicated that coating with the nanoparticles did not destroy the packing of cotton fibers in the gauze bandage. The nanoparticles exhibited fibrinolytic and collagenolytic activities. Protease activity remained after the nanoparticle coating was applied to the gauze bandage. The nanoparticles were not absorbed on a gelatin agar plate after incubation at 37 °C for 18 H. These results suggest that the coated cotton gauze bandage may be safe for further use, and the nanoparticles may not be absorbed into animal or human skin.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wanwisa Limphirat
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | | | | |
Collapse
|
2
|
Photochemically-Generated Silver Chloride Nanoparticles Stabilized by a Peptide Inhibitor of Cell Division and Its Antimicrobial Properties. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Urakaev FK, Khan NV, Shalabaev ZS, Tatykaev BB, Nadirov RK, Burkitbaev MM. Synthesis and Photocatalytic Properties of Silver Chloride/Silver Composite Colloidal Particles. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20010160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Abstract
The metallopeptidases thimet oligopeptidase (THOP, EC 3.4.24.25) and neurolysin (NEL, EC 3.4.24.26) are enzymes that belong to the zinc endopeptidase M13 family. Numerous studies suggest that these peptidases participate in the processing of bioactive peptides such as angiotensins and bradykinin. Efforts have been conducted to develop biotechnological tools to make possible the use of both proteases to regulate blood pressure in mice, mainly limited by the low plasmatic stability of the enzymes. In the present study, it was investigated the use of nanotechnology as an efficient strategy for to circumvent the low stability of the proteases. Recombinant THOP and NEL were immobilized in gold nanoparticles (GNPs) synthesized in situ using HEPES and the enzymes as reducing and stabilizing agents. The formation of rTHOP-GNP and rNEL-GNP was characterized by the surface plasmon resonance band, zeta potential and atomic force microscopy. The gain of structural stability and activity of rTHOP and rNEL immobilized on GNPs was demonstrated by assays using fluorogenic substrates. The enzymes were also efficiently immobilized on GNPs fabricated with sodium borohydride. The efficient immobilization of the oligopeptidases in gold nanoparticles with gain of stability may facilitate the use of the enzymes in therapies related to pressure regulation and stroke, and as a tool for studying the physiological and pathological roles of both proteases.
Collapse
|
5
|
TOLEDO GABRIELGDE, TOLEDO VICTORH, LANFREDI ALEXANDREJ, ESCOTE MARCIA, CHAMPI ANA, SILVA MARIACRISTINACDA, NANTES-CARDOSO ISELIL. Promising Nanostructured Materials against Enveloped Virus. ACTA ACUST UNITED AC 2020; 92:e20200718. [DOI: 10.1590/0001-3765202020200718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022]
|
6
|
Moradi S, Khodaiyan F, Hadi Razavi S. Green construction of recyclable amino-tannic acid modified magnetic nanoparticles: Application for β-glucosidase immobilization. Int J Biol Macromol 2019; 154:1366-1374. [PMID: 31730982 DOI: 10.1016/j.ijbiomac.2019.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
The β-glucosidase (BGL) enzyme in food industry is great interest due to its role in food conversion to produce functional food products. In this study, the BGL was covalently immobilized onto amino-tannic acid modified Fe3O4 magnetic nanoparticles (ATA-Fe3O4 MNPs) as biocompatible nanoplatform by modified poly-aldehyde pullulan (PAP) as a cross-linker to enhance the ability and strength of the nanoparticle connection to the enzyme. The properties of support were subsequently characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The highest percentage of loading and immobilization yield was obtained with 0.1 mg enzyme/mL citrate buffer (pH 6, 1 M) enzyme solution, carrier solution of 10 mg ATA-Fe3O4/3 mL citrate buffer (pH 6, 1 M), and PAP solution of 20% total reaction system volume. Optimum pH and temperature were found for free (pH 5.0 and temperature 30 °C) and immobilized (pH 6.0 and temperature 40 °C) enzyme. The immobilized BGL maintains its activity to 83% after 10 cycles. Therefore, immobilization of BGL by this method is an efficient procedure to improve the properties of enzyme.
Collapse
Affiliation(s)
- Samira Moradi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Seyed Hadi Razavi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
7
|
Palomo JM. Nanobiohybrids: a new concept for metal nanoparticles synthesis. Chem Commun (Camb) 2019; 55:9583-9589. [PMID: 31360955 DOI: 10.1039/c9cc04944d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In recent years, nanoscience and nanotechnology have brought a great revolution in different areas. In particular, the synthesis of transition metal nanoparticles has been of great relevance for their use in areas such as biomedicine, antimicrobial properties or catalytic applications for chemical synthesis. Recently, an innovative straightforward and very efficient synthesis of these nanoparticles by simply using enzymes as inductors in aqueous media has been described. This represents a very green alternative to the different methodologies described in the literature for metal nanoparticles preparation where harsh conditions are necessary. In this review the most recent advances in the synthesis of metal nanoparticles by this green technology, explaining the synthetic mechanism, the role of the enzyme in the formation of the nanoparticles and the effect on the final properties of these nanoparticles, are summarised. The application of these novel metal nanoparticles-enzyme hybrids in synthetic chemistry as heterogeneous catalysts with metal or dual (enzymatic and metallic) activity and their capacity as environmental and antimicrobial agents have also been discussed.
Collapse
Affiliation(s)
- Jose M Palomo
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, Cantoblanco, UAM Campus, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Tofanello A, Araujo JN, Nantes-Cardoso IL, Ferreira FF, Souza JA, Lim DW, Kitagawa H, Garcia W. Ultrafast fabrication of thermally stable protein-coated silver iodide nanoparticles for solid-state superionic conductors. Colloids Surf B Biointerfaces 2019; 176:47-54. [DOI: 10.1016/j.colsurfb.2018.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023]
|
9
|
Al-Dhafri K, Ching CL. Phyto-synthesis of silver nanoparticles and its bioactivity response towards nosocomial bacterial pathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
BRITO ADRIANNEM, BELLETI ELISANGELA, MENEZES LUCIVALDOR, LANFREDI ALEXANDREJ, NANTES-CARDOS ISELIL. Proteins and Peptides at the Interfaces of Nanostructures. ACTA ACUST UNITED AC 2019; 91:e20181236. [DOI: 10.1590/0001-3765201920181236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
|
11
|
Rapid Synthesis via Green Route of Plasmonic Protein-Coated Silver/Silver Chloride Nanoparticles with Controlled Contents of Metallic Silver and Application for Dye Remediation. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0947-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Cruz GF, Tofanello A, Araújo JN, Nantes-Cardoso IL, Ferreira FF, Garcia W. Fast One-Pot Photosynthesis of Plasmonic Protein-Coated Silver/Silver Bromide Nanoparticles with Efficient Photocatalytic Performance. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0851-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Siritapetawee J, Limphirat W, Nantapong N, Songthamwat D. Fabrication of silver chloride nanoparticles using a plant serine protease in combination with photoactivation and investigation of their biological activities. Biotechnol Appl Biochem 2018; 65:572-579. [PMID: 29314280 DOI: 10.1002/bab.1638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/28/2017] [Indexed: 02/05/2023]
Abstract
Recently, the development of "green" methods for fabrication of silver nanoparticles (Ag-NPs) has been emphasized, in view of their environmental safety, feasibility, and low cost. In this study, a serine protease, EuP-82 from Euphorbia cf. lactea latex, was used to fabricate silver chloride nanoparticles (AgCl-NPs) in phosphate-buffered saline (pH 7.2), under the influence of visible light. The fabricated nanoparticles had a maximal surface plasmon resonance absorption peak at 435 nm. The size of the AgCl-NPs, estimated by scanning electron microscopy, was 57 ± 14.7 nm. Energy dispersive X-ray spectroscopy, X-ray absorption spectroscopy, and X-ray diffraction analysis confirmed that the fabricated Ag-NPs were of the AgCl type. The fabricated nanoparticles had antioxidant activity, scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals with IC50 of 204 ± 1.8 μg/mL. The fabricated AgCl-NPs had broad-spectrum in vitro antimicrobial activities, acting against the Gram-positive bacteria Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Bacillus cereus, and the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. AgCl-NPs also showed antifungal activity against Candida albicans and C. tropicalis. In addition, AgCl-NPs showed antiprotozoal activity against Giardia lamblia, with IC50 202 ± 2.1 μg/mL. Based on the biological activities of the fabricated AgCl-NPs, they have the potential for widespread application in medicine and industry.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wanwisa Limphirat
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Nawarat Nantapong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Dujdow Songthamwat
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Center, Pathum Thani, Thailand
| |
Collapse
|