1
|
Supachettapun C, Ali MA, Muangsin N, Takada K, Matsumura K, Okajima MK, Kaneko T. Cyanobacterial Ampholyte Hydrogels Developed by the Cationization of Sulfated Polysaccharides and Their Cell-Compatibility. Biomacromolecules 2024; 25:5995-6006. [PMID: 39133657 DOI: 10.1021/acs.biomac.4c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Sacran is a cyanobacterial supergiant polysaccharide with carboxylate and sulfate groups that exhibits antiallergic and antiinflammatory properties. However, its high anionic functions restrict cell compatibility. Quaternary ammonium groups were substituted to form sacran ampholytes, and the cell compatibility of the cationized sacran hydrogels was evaluated. The cationization process involved the reaction of N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride with the primary amine or hydroxyl groups of sacran. The degree of cationization ranged from 32 to 87% for sugar residues. Hydrogels of sacran ampholytes were prepared by annealing their dried sheets by thermal cross-linking; these hydrogels exhibited anisotropic expansion properties. The water contact angle on the hydrogels decreased from 26.5 to 15.3° with an increase in the degree of cationization, thereby enhancing hydrophilicity. The IC50 values of sacran ampholytes decreased with an increased degree of cationization, resulting in a reduction in cytotoxicity toward the L-929 mouse fibroblast cell line. This reduction was associated with an increase in the cell proliferation density after 3 days of incubation. Scanning electron microscopy images showed fibroblast intercellular connections. Therefore, the sacran ampholyte hydrogel exhibited increased hydrophilicity and cell compatibility, which is beneficial for various biomedical applications.
Collapse
Affiliation(s)
- Chamaiporn Supachettapun
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mohammad Asif Ali
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kenji Takada
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Maiko K Okajima
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuo Kaneko
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
2
|
Budpud K, Okeyoshi K, Okajima MK, Kaneko T. Cyanobacterial supra‐polysaccharide: Self‐similar hierarchy, diverse morphology, and application prospects of sacran fibers. Biopolymers 2022; 113:e23522. [DOI: 10.1002/bip.23522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kulisara Budpud
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Nomi Ishikawa Japan
| | - Kosuke Okeyoshi
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Nomi Ishikawa Japan
| | - Maiko K. Okajima
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Nomi Ishikawa Japan
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Nomi Ishikawa Japan
| |
Collapse
|
3
|
Sacran polysaccharide improves atopic dermatitis through inhibiting Th2 type immune response. Life Sci 2022; 288:120205. [PMID: 34871665 DOI: 10.1016/j.lfs.2021.120205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
AIMS This study was aimed to explore whether sacran polysaccharide has a therapeutic effect on atopic dermatitis (AD) and its possible mechanisms. MATERIALS AND METHODS 2, 4-dinitrochlorobenzene (DNCB)-induced AD mice were treated with 0.2% Sacran, 0.5% Sacran and 0.1% tacrolimus. Through scoring dermatitis severity, measuring ear thickness, cracking behavior, open field test, we evaluated the therapeutic effect of Sacran on DNCB-induced AD mice. CD4+ T cells and CD8+ T cells were evaluated by flow cytometry. The relative expression of Ifng and Il4 were measured by real-time quantitative PCR. KEY FINDINGS Sacran could relieved the symptoms of DNCB-induced AD mice, such as AD score, ear thickness, and IgE release. Sacran may alleviate dermatitis by inhibiting Th2 activation and reducing IgE release. SIGNIFICANCE Our research further proved that polysaccharide Sacran has anti-dermatitis effects, and also clarified its mechanism of alleviating dermatitis by inhibiting the activation of Th2 cells and reducing the release of IgE, which provides a theoretical basis for the future clinical transformation of polysaccharide Sacran.
Collapse
|
4
|
Puluhulawa LE, Joni IM, Mohammed AFA, Arima H, Wathoni N. The Use of Megamolecular Polysaccharide Sacran in Food and Biomedical Applications. Molecules 2021; 26:molecules26113362. [PMID: 34199586 PMCID: PMC8199723 DOI: 10.3390/molecules26113362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Natural polymer is a frequently used polymer in various food applications and pharmaceutical formulations due to its benefits and its biocompatibility compared to synthetic polymers. One of the natural polymer groups (i.e., polysaccharide) does not only function as an additive in pharmaceutical preparations, but also as an active ingredient with pharmacological effects. In addition, several natural polymers offer potential distinct applications in gene delivery and genetic engineering. However, some of these polymers have drawbacks, such as their lack of water retention and elasticity. Sacran, one of the high-molecular-weight natural polysaccharides (megamolecular polysaccharides) derived from Aphanothece sacrum (A. sacrum), has good water retention and elasticity. Historically, sacran has been used as a dietary food. Moreover, sacran can be applied in biomedical fields as an active material, excipient, and genetic engineering material. This article discusses the characteristics, extraction, isolation procedures, and the use of sacran in food and biomedical applications.
Collapse
Affiliation(s)
- Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjajaran, Sumedang 45363, Indonesia;
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjajaran, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence (FiNder U CoE) Padjadajaran Universitas Padjajaran, Sumedang 45363, Indonesia
| | | | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjajaran, Sumedang 45363, Indonesia;
- Correspondence: ; Tel.: +62-22-842-888888
| |
Collapse
|
5
|
Sornkamnerd S, Okajima MK, Matsumura K, Kaneko T. Micropatterned Cell Orientation of Cyanobacterial Liquid-Crystalline Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44834-44843. [PMID: 30480994 DOI: 10.1021/acsami.8b15825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Control of cell extension direction is crucial for the regeneration of tissues, which are generally composed of oriented molecules. The scaffolds of highly oriented liquid crystalline polymer chains were fabricated by casting cyanobacterial mega-saccharides, sacran, on parallel-aligned micrometer bars of polystyrene (PS). Polarized microscopy revealed that the orientation was in transverse direction to the longitudinal axes of the PS bars. Swelling behavior of the micropatterned hydrogels was dependent on the distance between the PS bars. The mechanical properties of these scaffolds were dependent on the structural orientation; additionally, the Young's moduli in the transverse direction were higher than those in the parallel direction to the major axes of the PS bars. Further, fibroblast L929 cells were cultivated on the oriented scaffolds to be aligned along the orientation axis. L929 cells cultured on these scaffolds exhibited uniaxial elongation.
Collapse
Affiliation(s)
- Saranyoo Sornkamnerd
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology, (VISTEC) , Payupnai , Wang Chan 21210 , Thailand
| | - Maiko K Okajima
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Kazuaki Matsumura
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Tatsuo Kaneko
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| |
Collapse
|
6
|
Arima H, Motoyama K, Higashi T, Fukushima S, Ihn H. [Anti-inflammatory Effect of Sacran on Atopic Dermatitis]. YAKUGAKU ZASSHI 2018; 138:509-515. [PMID: 29607997 DOI: 10.1248/yakushi.17-00201-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atopic dermatitis (AD) is a chronic skin disease characterized by inflammation, pruritus, and eczematous lesions. Recently, sacran, a new polysaccharide isolated from cyanobacterium Aphanothece sacrum (Sur.) OKADA discovered by Suringar in the 19th century, has received considerable attention as a novel biomaterial. Previously, it was reported that sacran exhibits potent anti-inflammatory effects for skin diseases produced by various stimulants with optimum effective concentrations at 0.01% (w/v) and 0.05% (w/v) in rats and mice. Importantly, we demonstrated clinically that almost all of the average scores for AD symptoms in patient treated with sacran solutions were improved. In AD model mice, sacran treatment markedly down-regulated inflammatory cytokine and chemokine mRNA levels compared with non-treated controls. Furthermore, sacran solution significantly suppressed inflammation response in RAW264.7 cells. In RBL-2H3 cells, the sacran solution significantly lowered degranulation. Taken together, our studies suggest sacran may have the potential to improve AD through functional recovery of skin barrier and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
7
|
Motoyama K, Tanida Y, Sakai A, Higashi T, Kaneko S, Arima H. Anti-allergic effects of novel sulfated polysaccharide sacran on mouse model of 2,4-Dinitro-1-fluorobenzene-induced atopic dermatitis. Int J Biol Macromol 2018; 108:112-118. [DOI: 10.1016/j.ijbiomac.2017.11.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 01/08/2023]
|
8
|
Sujiaonori-Derived Algal Biomaterials Inhibit Allergic Reaction in Allergen-Sensitized RBL-2H3 Cell Line and Improve Skin Health in Humans. J Funct Biomater 2017; 8:jfb8030037. [PMID: 28850069 PMCID: PMC5618288 DOI: 10.3390/jfb8030037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023] Open
Abstract
Sujiaonori, a river alga growing in the Kochi prefecture, Japan, contains several bioactive compounds such as sulfated polysaccharides (ulvans), ω-3 fatty acids, and vitamins. Dietary intake of this alga-based supplement has been reported to increase circulatory adiponectin, a salutary hormone that is reported to be associated with healthy longevity and prevents a number of cardiovascular and metabolic disorders. This report highlights the anti-allergic and skin health enhancing effects of Sujiaonori-derived ulvan (Tosalvan) and supplement, respectively. RBL-2H3 cell line was used to investigate the anti-allergic effect of algal SP through the evaluation of β-hexosaminidase activity. Algal sulfated polysaccharides or SP (Tosalvan, Yoshino SP) were extracted from powders of dried alga samples provided by local food manufacturers. Report on the effect of daily dietary intake of Sujiaonori-based supplement on skin health is part of a four-week clinical investigation that, in comparison with a supplement made of 70% corn starch powder and 30% spinach powder mixture (twice 3 g daily), explore the beneficial effects of Sujiaonori algal biomaterial (SBM; 3 g taken twice daily) on cardiovascular, gastrointestinal and skin health in a sample of Japanese women. Transepidermal water loss (TEWL) was the skin health marker used in this study and was measured with the use of a corneometer. Significant reduction of β-hexosaminidase activity was observed in Tosalvan and Yoshino SP-treated cells (vs. control; p < 0.05), whereas dietary intake of SBM markedly reduced TEWL level after four weeks of supplementation, as compared to baseline TEWL (p < 0.001). Additionally, SBM improved TEWL better than the control product (p < 0.001). Findings contained in this report suggest that Sujiaonori-derived Tosalvan and Yoshino SP have anti-allergic potential and that the dietary intake of SBM has a beneficial effect on skin health.
Collapse
|