1
|
Rakheja I, Bharti V, Sahana S, Das PK, Ranjan G, Kumar A, Jain N, Maiti S. Development of an In Silico Platform (TRIPinRNA) for the Identification of Novel RNA Intramolecular Triple Helices and Their Validation Using Biophysical Techniques. Biochemistry 2024. [PMID: 39668452 DOI: 10.1021/acs.biochem.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
There are surprisingly few RNA intramolecular triple helices known in the human transcriptome. The structure has been most well-studied as a stability-element at the 3' end of lncRNAs such as MALAT1 and NEAT1, but the intrigue remains whether it is indeed as rare as it is understood to be or just waiting for a closer look from a new vantage point. TRIPinRNA, our Python-based in silico platform, allows for a comprehensive sequence-pattern search for potential triplex formation in the human transcriptome─noncoding as well as coding. Using this tool, we report the putative occurrence of homopyrimidine type (canonical) triple helices as well as heteropurine-pyrimidine strand type (noncanonical) triple helices in the human transcriptome and validate the formation of both types of triplexes using biophysical approaches. We find that the occurrence of triplex structures has a strong correlation with local GC content, which might be influencing their formation. By employing a search that encompasses both canonical and noncanonical triplex structures across the human transcriptome, this study enriches the understanding of RNA biology. Lastly, TRIPinRNA can be utilized in finding triplex structures for any organism with an annotated transcriptome.
Collapse
Affiliation(s)
- Isha Rakheja
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Bharti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - S Sahana
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prosad Kumar Das
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Gyan Ranjan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajit Kumar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Niyati Jain
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Institute of Genomics and Integrative Biology (IGIB)-National Chemical Laboratory (NCL) Joint Center, Council of Scientific and Industrial Research-NCL, Pune 411008, India
| |
Collapse
|
2
|
Stężycka O, Kasperkowiak M, Frańska M, Nowak D, Hoffmann M. Oxygen Atom from Carbonyl Group as an Important Binding Agent to the G-Quadruplex - Study Case of Flavonoids. Chempluschem 2024; 89:e202400186. [PMID: 38713672 DOI: 10.1002/cplu.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
In the field of anticancer therapy study it is of great interest to find effective G-quadruplex ligands which may be of potential use in medical treatment or cancer prevention. Since among the compounds of natural origin, flavonoids have attracted notable attention because of their unique properties and promising therapeutic applications, an interesting question was to identify the flavonoid structural features that could provide effective binding properties toward G-quadruplex. By using electrospray ionization mass spectrometry, followed by the survival yield method, it has been shown that the flavonoid molecules which contain an available C4=O carbonyl group form more stable adducts with G-tetrads than the other ones. Molecular docking has shown that C4=O carbonyl group can be a source of hydrogen bonds and/or π-stacking interactions. Therefore, the flavonoid molecules which contain an available C4=O carbonyl group can be regarded as good binders of G-quadruplexes.
Collapse
Affiliation(s)
- Olga Stężycka
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Małgorzata Kasperkowiak
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Damian Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Peng X, Liu X, Tan L. Interaction of ruthenium(Ⅱ) polypyridyl complexes [Ru(phen)2(L)]2+ (L = PIP, p-HPIP and m-HPIP) with RNA poly(A)•poly(U): each complex unexpectedly exhibiting a destabilizing effect on RNA. Bioorg Chem 2023; 135:106523. [PMID: 37027949 DOI: 10.1016/j.bioorg.2023.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
To further explore the binding properties of Ru(Ⅱ) polypyridine complexes with RNA, three Ru(Ⅱ) complexes [Ru(phen)2(PIP)]2+ (Ru1), [Ru(phen)2(p-HPIP)]2+ (Ru2), and [Ru(phen)2(m- HPIP)]2+ (Ru3) have been synthesized and characterized in this work. The binding properties of three Ru(Ⅱ) complexes with RNA duplex poly(A)•poly(U) have been investigated by spectral and viscosity experiments. These studies all support that these three Ru(Ⅱ) complexes bind to poly RNA duplex poly(A)•poly(U) by intercalation, and Ru1 without substituents has a stronger binding affinity for poly(A)•poly(U). Interestingly, the thermal melting experiments show that these three Ru(Ⅱ) complexes all destabilize RNA duplex poly(A)•poly(U), and the destabilizing effect can be explained by the conformational changes of duplex structure induced by intercalating agents. To the best of our knowledge, this work report for the first time a small molecule capable of destabilizing an RNA duplex, which reflects that the substitution effect of intercalated ligands has an important influence on the affinity of Ru(Ⅱ) complexes to RNA duplex, and that not all Ru(Ⅱ) complexes show thermal stability effects on an RNA duplex.
Collapse
Affiliation(s)
- Xing Peng
- College of Chemistry, Xiangtan University, Xiangtan 411105, Peoples Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, Peoples Republic of China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, XiangtanUniversity, Xiangtan 411105, Peoples Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, Peoples Republic of China.
| |
Collapse
|
4
|
Rakheja I, Ansari AH, Ray A, Chandra Joshi D, Maiti S. Small molecule quercetin binds MALAT1 triplex and modulates its cellular function. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:241-256. [PMID: 36284512 PMCID: PMC9576543 DOI: 10.1016/j.omtn.2022.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The triple-helix structure at the 3' end of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA, has been considered to be a target for modulating the oncogenic functions of MALAT1. This study examines the binding of quercetin-a known triplex binding molecule-to the MALAT1 triplex. By employing UV-visible spectroscopy, circular dichroism spectroscopy, and isothermal titration calorimetry, we observed that quercetin binds to the MALAT1 triplex with a stoichiometry of 1:1 and K d of 495 ± 61 nM, along with a negative change in free energy, indicating a spontaneous interaction. Employing real-time PCR measurements, we observed around 50% downregulation of MALAT1 transcript levels in MCF7 cells, and fluorescence in situ hybridization (FISH) experiments showed concomitantly reduced levels of MALAT1 in nuclear speckles. This interaction is likely a result of a direct interaction between the molecule and the RNA, as indicated by a transcription-stop experiment. Further, transcriptome-wide analysis of alternative splicing changes induced by quercetin revealed modulation of MALAT1 downstream genes. Collectively, our study shows that quercetin strongly binds to the MALAT1 triplex and modulates its functions. It can thus be used as a scaffold for further development of therapeutics or as a chemical tool to understand MALAT1 functions.
Collapse
Affiliation(s)
- Isha Rakheja
- Chemical and Systems Biology Unit, Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Asgar Hussain Ansari
- Chemical and Systems Biology Unit, Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Dheeraj Chandra Joshi
- Chemical and Systems Biology Unit, Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Souvik Maiti
- Chemical and Systems Biology Unit, Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Institute of Genomics and Integrative Biology (IGIB)-National Chemical Laboratory (NCL) Joint Center, Council of Scientific and Industrial Research-NCL, Pune 411008, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
5
|
Peng X, Liu X, Li J, Tan L. RNA-binding of Ru(II) complexes [Ru(phen) 2(7-OCH 3-dppz)] 2+ and [Ru(phen) 2(7-NO 2-dppz)] 2+: The former serves as a molecular "light switch" for poly(A)•poly(U). J Inorg Biochem 2022; 237:111991. [PMID: 36115329 DOI: 10.1016/j.jinorgbio.2022.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 01/18/2023]
Abstract
To further determine the factors that affect the binding properties of ruthenium(II) polypyridine complexes with RNA duplex and to find excellent RNA-binding agents, the binding properties of ruthenium(II) complexes [Ru(phen)2(7-OCH3-dppz)]2+ (Ru1, phen = 1,10-phenan- throline, 7-OCH3-dppz = 7-methoxy-dipyrido-[3,2-a,2',3'-c]-phenazine) and [Ru(phen)2(7-NO2- dppz)]2+ (Ru2, 7-NO2-dppz = 7-nitro-dipyrido-[3,2-a,2',3'-c]-phenazine) with RNA poly(A)•poly(U) duplex have been investigated by spectroscopic methods and viscosity measurements in this work. The results show that complexes Ru1 and Ru2 bind to poly(A)•poly(U) through intercalation and the binding affinity between Ru2 and poly(A)•poly(U) is greater than that of Ru1. Thermal denaturation experiments suggest that both ruthenium(II) complexes exhibit a significant stabilizing effect on poly(A)•poly(U) duplex. Moreover, fluorescence emission spectra exhibit that, deviating from Ru2, Ru1 exhibits a "light switch" effect for poly(A)•poly(U). This effect can be observed by the naked eye under UV light and adjusted by pH, meaning that Ru1 may act as a reversible pH controlled molecular "light switch". The results obtained in this work will contribute to our understanding of the significant influence of the intercalative ligand substituent effect in the binding process of ruthenium(II) complexes with RNA duplex.
Collapse
Affiliation(s)
- Xing Peng
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Juan Li
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
6
|
Yuan F, Liu X, Tan L. Binding and stabilization effect of arene ruthenium(Ⅱ) polypyridyl complexes toward the triple-helical RNA poly(U)•poly(A)⁎poly(U). Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Wang H, Liu X, Tan L. A naked-eye colorimetric molecular "light switch" based on ruthenium(II) polypyridyl complex [Ru(phen) 2ttbd] 2+ as binder and stabilizer for RNA duplex and triplex. Int J Biol Macromol 2022; 215:571-578. [PMID: 35752337 DOI: 10.1016/j.ijbiomac.2022.06.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/05/2022]
Abstract
Binding of [Ru(phen)2ttbd]2+ (phen = 1,10-phenanthroline, ttbd = 4-(6-propenylpyrido-[3,2-a]- phenzain-10-yl-benzene-1,2-diamine) to the RNA triplex poly(U-A*U) (herein "-" and "*" refer to the Watson-Crick and Hoogsteen binding, respectively) and the duplex poly(A-U) have been investigated by spectral technology and viscosity method. Analysis of spectral titrations and viscosity experiments as well as melting measurements suggest that [Ru(phen)2ttbd]2+ binds to the studied RNA triplex and duplex through intercalation, while its binding constant toward the triplex is greater than the duplex. Luminescent titrations indicate that [Ru(phen)2ttbd]2+ can act as a molecular "light switch" for the two RNAs and the switch effect can be detected by the naked-eye. Moreover, the "light switch" can be repeatedly cycled off and on by adjusting the pH of the solution, whereas color change in the case of the triplex is more significant compared with the duplex. To our knowledge, [Ru(phen)2ttbd]2+ is the first small molecule capable of serving as a pH-controlled reversible visual molecular "light switch" for both the RNA triplex poly(U-A*U) and duplex poly(A-U). Thermal denaturation experiments suggest that [Ru(phen)2ttbd]2+ can obviously increase the triplex stabilization, while it stabilizing third-strand is more marked in comparison with the template duplex of the triplex, indicating this complex preferentially binds to third-strand. The obtained results may be useful for understanding the binding of Ru(II) polypyridyl complexes to RNAs.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
8
|
Substituent effects on the interactions of ruthenium(II) polypyridyl complexes [Ru(bpy)2(6-R-dppz)]2+ (R = hydroxy and fluorine) with the RNA triplex poly(rU)·poly(rA) × poly(rU). Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Zhang G, Zhang C, Sun J, Xiong Y, Wang L, Chen D. Phytochemical Regulation of RNA in Treating Inflammatory Bowel Disease and Colon Cancer: Inspirations from Cell and Animal Studies. J Pharmacol Exp Ther 2021; 376:464-472. [PMID: 33397676 DOI: 10.1124/jpet.120.000354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies suggest an important role for RNA, especially noncoding RNA, in inflammatory bowel disease (IBD) and colon cancer. Drug development based on regulating RNA rather than protein is a promising new area. Phytochemicals are naturally occurring plant-derived compounds with chemical diversity, biologic activity, easy availability, and low toxicity. Many phytochemicals have been shown to exert protective effects on IBD and colon cancer through modulation of RNAs. The aim of this study was to summarize the advancements of phytochemicals in regulating RNA for the treatment of IBD and colon cancer. This review involves many phytochemicals, including polyphenols, flavones, and alkaloids, which can influence various types of RNAs, including microRNA, long noncoding RNA, as well as messenger RNA, by influencing a variety of upstream molecules or regulating epigenetic processes. The limitation for many current studies is that the specific mechanisms of phytochemicals regulating RNA have not been fully uncovered. Accompanied by more identified functions of RNAs, especially noncoding RNA functions, the screening of RNA-regulating phytochemicals has presented challenges as well as opportunities for the prevention and treatment of IBD and colon cancer. SIGNIFICANCE STATEMENT: Noncoding RNAs, which constitute the majority of the human transcriptional genome, play a key role in the disease state and are considered as important therapeutic targets in inflammatory bowel disease (IBD) and colon cancer. Recent studies have shown that phytochemicals regulate the expression of many noncoding RNAs involved in IBD and colon cancer. Therefore, identifying the specific molecular mechanism of phytochemicals regulating noncoding RNA in disease models may result in novel and effective therapeutic opportunities.
Collapse
Affiliation(s)
- Guolin Zhang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Chi Zhang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Jia'ao Sun
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Yongjian Xiong
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Liang Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| |
Collapse
|
10
|
Chowdhury S, Bhuiya S, Haque L, Das S. A Spectroscopic Approach towards the Comparative Binding Studies of the Antioxidizing Flavonol Myricetin with Various Single‐Stranded RNA. ChemistrySelect 2020. [DOI: 10.1002/slct.202003601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Susmita Chowdhury
- Biophysical Chemistry Laboratory Physical Chemistry Section Department of Chemistry Jadavpur University 188, Raja S. C. Mallick Road Kolkata 700032 India
| | - Sutanwi Bhuiya
- Biophysical Chemistry Laboratory Physical Chemistry Section Department of Chemistry Jadavpur University 188, Raja S. C. Mallick Road Kolkata 700032 India
| | - Lucy Haque
- Biophysical Chemistry Laboratory Physical Chemistry Section Department of Chemistry Jadavpur University 188, Raja S. C. Mallick Road Kolkata 700032 India
| | - Suman Das
- Biophysical Chemistry Laboratory Physical Chemistry Section Department of Chemistry Jadavpur University 188, Raja S. C. Mallick Road Kolkata 700032 India
| |
Collapse
|
11
|
Comparative studies on the binding interaction of two chiral Ru(II) polypyridyl complexes with triple- and double-helical forms of RNA. J Inorg Biochem 2020; 214:111301. [PMID: 33166867 DOI: 10.1016/j.jinorgbio.2020.111301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 12/27/2022]
Abstract
Two chiral Ru(II) polypyridyl complexes, Δ-[Ru(bpy)2(6-F-dppz)]2+ (Δ-1; bpy = 2,2'-bipyridine, 6-F-dppz = 6-fluorodipyrido[3,2-a:2',3'-c]phenazine) and Λ-[Ru(bpy)2(6-F-dppz)]2+ (Λ-1), have been synthesized and characterized as binders for the RNA poly(U)•poly(A)*poly(U) triplex and poly(A)•poly(U) duplex in this work. Analysis of the UV-Vis absorption spectra and fluorescence emission spectra indicates that the binding of intercalating Δ-1 with the triplex and duplex RNA is greater than that of Λ-1, while the binding affinities of the two enantiomers to triplex structure is stronger than that of duplex structure. Fluorescence titrations show that the two enantiomers can act as molecular "light switches" for triple- and double-helical RNA. Thermal denaturation studies revealed that that the two enantiomers are more stable to Watson-Crick base-paired double strand of the triplex than the Hoogsteen base-paired third strand, but their stability and selectivity are different. For Δ-enantiomer, the increase of the thermal stability of the Watson-Crick base-paired duplex (13 °C) is slightly stronger than of the Hoogsteen base-paired strand (10 °C), displaying no obvious selectivity. However, compared to the Hoogsteen base-paired strand (5 °C), the stability of the Λ-enantiomer to the Watson-Crick base-paired duplex (13 °C) is more significant, which has obvious selectivity. The overall increase in viscosity of the RNA-(Λ-1) system and its curve shape are similar to that of the RNA-(Δ-1) system, suggesting that the binding modes of two enantiomers with RNA are intercalation. The obtained results in this work may be useful for understanding the binding differences in chiral Ru(II) polypyridyl complexes toward RNA triplex and duplex.
Collapse
|
12
|
Tan L, Zhang J. A phenolic hydroxyl in the ortho- and meta-positions on the main ligands effect on the interactions of [Ru(phen) 2(o-HPIP)] 2+ and [Ru(phen) 2(m-HPIP)] 2+ with the poly(U)·poly(A)*poly(U) triplex. J Inorg Biochem 2020; 213:111268. [PMID: 33065523 DOI: 10.1016/j.jinorgbio.2020.111268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 01/14/2023]
Abstract
The association of two ruthenium(II) complexes [Ru(phen)2(o-HPIP)]2+ (Ru1; phen = 1,10-phenanthroline, o-HPIP = 2-(2-hydroxyphenyl)-imidazo[4,5-f][1,10] phenanthroline) and [Ru(phen)2(m-HPIP)]2+ (Ru2; m-HPIP = 2-(3-hydroxyphenyl)-imidazo[4,5-f][1,10]phenan- throline) with the RNA poly(U)·poly(A)⁎poly(U) triplex has been investigated by spectrophotometric titrations and melting experiments in this work. All experimental data reveal an intercalative triplex-binding mode of the two complexes, whereas the binding constant for Ru1 is significantly higher than that for Ru2. Circular dichroism spectroscopic investigations show that the two complexes could bind to the chiral environment of the triplex, but the triplex perturbation effects induced by Ru1 are more marked. Thermal denaturation experiments demonstrate that both Ru1 and Ru2 display a large binding preference and stabilizing effect for the third strand over the Watson-Crick base-paired duplex of the triplex. However, the third-strand stabilizing effect of Ru1 is much more effective than that of Ru2. The obtained results suggest that positions of the phenolic group on the main ligands have significant effect on the binding of the two complexes with poly(U)·poly(A)⁎poly(U) triplex.
Collapse
Affiliation(s)
- Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Jingwen Zhang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| |
Collapse
|
13
|
Jiang L, Liu X, Tan L. Synthesis and characterization of chiral Ru(II) polypyridyl complexes and their binding and stabilizing effects toward triple-helical RNA. J Inorg Biochem 2020; 213:111263. [PMID: 33011626 DOI: 10.1016/j.jinorgbio.2020.111263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023]
Abstract
Two novel chiral Ru(II) complexes, Λ- and Δ-[Ru(bpy)2(7-CF3-dppz)]2+ (Λ-1 and Δ-1; bpy = 2,2'-bipyridine, 7-CF3-dppz = 7-trifluoromethyl-dipyrido[3,2-a:2',3'-c]phenazine), were synthesized and characterized in this work. The binding and stabilizing effects of Λ-1 and Δ-1 toward the RNA poly(U)•poly(A)*poly(U) triplex were studied by various biophysical techniques. Absorption spectra and fluorescence quenching indicates that the binding affinity of Δ-1 is slightly higher than that Λ-1. Both enantiomers induce significant positive viscosity changes that are indicative of intercalative binding, whereas changes in the relative viscosities of the triplex are found to be more pronounced with Δ-1. Melting experiments indicate that the triplex stabilization effects of both enantiomers are significantly different from each other. With Λ-1, the stabilization of the Watson-Crick base-paired duplex (the template duplex) of the triplex shows a moderate increase, whereas the stabilization of the Hoogsteen base-paired strand (third-strand) exhibits slight decrease under the same conditions, suggesting Λ-1 prefers to stabilize the template duplex rather than third-strand. In stark contrast to Λ-1, Δ-1 can not only strongly stabilize the template duplex, but also moderately increase the third-strand stabilization, even so, which imply that Δ-1 also prefer to stabilize the template duplex instead of the third-strand. These suggest that the [Ru(bpy)2(7-CF3-dppz)]2+ is similar as a non-specific metallointercalator the triplex studied in this work. Combined with our recent research, the obtained results further indicate that Δ- enantiomers rather than Λ-ones of Ru(II) polypyridyl complexes usually exhibit stronger binding and stabilizing effects toward the triplex.
Collapse
Affiliation(s)
- Lijuan Jiang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
14
|
Brown JA. Unraveling the structure and biological functions of RNA triple helices. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1598. [PMID: 32441456 PMCID: PMC7583470 DOI: 10.1002/wrna.1598] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It has been nearly 63 years since the first characterization of an RNA triple helix in vitro by Gary Felsenfeld, David Davies, and Alexander Rich. An RNA triple helix consists of three strands: A Watson–Crick RNA double helix whose major‐groove establishes hydrogen bonds with the so‐called “third strand”. In the past 15 years, it has been recognized that these major‐groove RNA triple helices, like single‐stranded and double‐stranded RNA, also mediate prominent biological roles inside cells. Thus far, these triple helices are known to mediate catalysis during telomere synthesis and RNA splicing, bind to ligands and ions so that metabolite‐sensing riboswitches can regulate gene expression, and provide a clever strategy to protect the 3′ end of RNA from degradation. Because RNA triple helices play important roles in biology, there is a renewed interest in better understanding the fundamental properties of RNA triple helices and developing methods for their high‐throughput discovery. This review provides an overview of the fundamental biochemical and structural properties of major‐groove RNA triple helices, summarizes the structure and function of naturally occurring RNA triple helices, and describes prospective strategies to isolate RNA triple helices as a means to establish the “triplexome”. This article is categorized under:RNA Structure and Dynamics > RNA Structure and Dynamics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
15
|
Binding properties of chiral ruthenium(II) complexes Λ- and Δ-[Ru(bpy) 2dppz-11-CO 2Me] 2+ toward the triplex RNA poly(U)•poly(A)*poly(U). J Inorg Biochem 2018; 186:51-59. [PMID: 29852349 DOI: 10.1016/j.jinorgbio.2018.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Two chiral ruthenium(II) complexes containing ligand dppz-CO2Me (dppz-11-CO2Me = dipyrido[3,2-a,2',3'-c]phenazine-11-carboxylic acid methyl ester), Δ-[Ru(bpy)2dppz-11-CO2Me]2+ (bpy = 2,2'-bipyridine; Δ-1) and Λ-[Ru(bpy)2dppz-11-CO2Me]2+ (Λ-1), were synthesized and characterized. The binding of the two enantiomers with the triplex RNA poly(U)•poly(A)*poly(U) was carried out by various biophysical techniques. Analysis of the absorption and fluorescence features indicates that the binding strengths of the two enantiomers toward the triplex RNA differ only slightly from each other. The total increase in viscosity and shape of the curves for the triplex RNA with Λ-1 is similar to that with Δ-1, suggesting the binding modes of two enantiomers with the triplex RNA are intercalation. Thermal melting measurements indicate that the stabilization effects clearly depended on the concentrations of Λ-1 and Δ-1. However, the third-strand stabilizing effect of Δ-1 dramatically differs from that of Λ-1 when they interact with the chiral environment of the RNA triple at pH = 7.0 and [Na+] = 35 mM. Combined with the CD (CD = circular dichroism) variations of the triplex RNA with either Λ-1 or Δ-1, the reason for their different triplex stabilization effects may originate from the two enantiomers through different orientations intercalating into nucleobases of the triplex. In addition, effects of higher ionic strengths on the triplex stabilization in the absence and presence of the two enantiomers have also been studied. The results presented here may be useful for understanding the binding properties of the triplex RNA with small molecule, particularly chiral ruthenium(II) complexes.
Collapse
|
16
|
Affiliation(s)
- Avinash M. Patil
- Department of Chemistry, The Centre for Advanced Studies, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Dayanand A. Kamble
- Department of Chemistry, The Centre for Advanced Studies, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Pradeep D. Lokhande
- Department of Chemistry, The Centre for Advanced Studies, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
17
|
Haque L, Bhuiya S, Das S. Assessment of intercalative interaction of the benzophenanthridine plant alkaloid nitidine with higher-ordered forms of RNA: spectroscopic evaluation. NEW J CHEM 2018. [DOI: 10.1039/c8nj03705a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectrophotometric, spectropolarimetric, viscometric and spectrofluorimetric analysis of the binding of the alkaloid nitidine to double- and triple-helical forms of RNA have served to highlight the ability of this drug to produce changes in the structure of RNA.
Collapse
Affiliation(s)
- Lucy Haque
- Department of Chemistry
- Jadavpur University
- Raja S. C. Mullick Road
- Kolkata 700 032
- India
| | - Sutanwi Bhuiya
- Department of Chemistry
- Jadavpur University
- Raja S. C. Mullick Road
- Kolkata 700 032
- India
| | - Suman Das
- Department of Chemistry
- Jadavpur University
- Raja S. C. Mullick Road
- Kolkata 700 032
- India
| |
Collapse
|
18
|
Bhuiya S, Haque L, Goswami R, Das S. Multispectroscopic and Theoretical Exploration of the Comparative Binding Aspects of Bioflavonoid Fisetin with Triple- and Double-Helical Forms of RNA. J Phys Chem B 2017; 121:11037-11052. [DOI: 10.1021/acs.jpcb.7b07972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sutanwi Bhuiya
- Department of Chemistry, Jadavpur University, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Lucy Haque
- Department of Chemistry, Jadavpur University, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Rapti Goswami
- Department of Chemistry, Jadavpur University, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman Das
- Department of Chemistry, Jadavpur University, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|