1
|
Martínez AL, Brea J, Domínguez E, Varela MJ, Allegue C, Cruz R, Monroy X, Merlos M, Burgueño J, Carracedo Á, Loza MI. Identification of Sodium Transients Through NaV1.5 Channels as Regulators of Differentiation in Immortalized Dorsal Root Ganglia Neurons. Front Cell Neurosci 2022; 16:816325. [PMID: 35465610 PMCID: PMC9018981 DOI: 10.3389/fncel.2022.816325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal differentiation is a complex process through which newborn neurons acquire the morphology of mature neurons and become excitable. We employed a combination of functional and transcriptomic approaches to deconvolute and identify key regulators of the differentiation process of a DRG neuron-derived cell line, and we focused our study on the NaV1.5 ion channel (encoded by Scn5a) as a channel involved in the acquisition of DRG neuronal features. Overexpression of Scn5a enhances the acquisition of neuronal phenotypic features and increases the KCl-elicited hyperexcitability response in a DRG-derived cell line. Moreover, pharmacologic inhibition of the NaV1.5 channel during differentiation hinders the acquisition of phenotypic features of neuronal cells and the hyperexcitability increase in response to changes in the extracellular medium ionic composition. Taken together, these data highlight the relevance of sodium transients in regulating the neuronal differentiation process in a DRG neuron-derived cell line.
Collapse
Affiliation(s)
- Antón L. Martínez
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eduardo Domínguez
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J. Varela
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Catarina Allegue
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xavier Monroy
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Manuel Merlos
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Javier Burgueño
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- *Correspondence: Javier Burgueño,
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
| | - María Isabel Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- María Isabel Loza,
| |
Collapse
|
2
|
An integrated strategy for the identification and screening of anti-allergy components from natural products based on calcium fluctuations and cell extraction coupled with HPLC-Q-TOF-MS. Anal Bioanal Chem 2021; 413:6253-6266. [PMID: 34415362 DOI: 10.1007/s00216-021-03580-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Allergic diseases are a significant public health problem worldwide. Traditional Chinese medicines (TCMs) with reported anti-allergy effects may be important sources for the development of new anti-allergy drugs. Thus, establishing an analytical method that can simultaneously identify and screen anti-allergic compounds in TCMs is important. The increased concentrations of intracellular calcium ions resulting in mast cell degranulation releasing active mediators play a key role in allergic diseases, which can be used as a potential index to identify anti-allergic herbs and compounds. In this study, we provide a new strategy that was applied to screening natural anti-allergic compounds based on fluorescence calcium ion (Ca2+) fluctuation integrated with cell extract and high-performance liquid chromatography-mass spectrometry (HPLC-MS). A low-cost, convenient fluorescence detection Ca2+ signaling method was established and successfully applied to identify three herbs. Then, the method was integrated with biospecific cell fishing and HPLC-MS to screen potential active components that have the effect of stabilizing the cell membrane of rat basophilic leukemia granulocytes (RBL-2H3). Seven components, namely, albiflorin and paeoniflorin from Radix Paeoniae Alba, ononin and formononetin from Radix Astragali, cimifugin, 4'-O-β-D-glucosyl-5-O-methylvisamminol, and prim-O-glucosylcimifugin from Radix Saposhnikoviae were fished. These seven compounds have the effect of inhibiting cell Ca2+ influx. 4'-O-β-D-Glucosyl-5-O-methylvisamminol, prim-O-glucosylcimifugin, paeoniflorin, ononin, and formononetin significantly inhibit the release of β-hexosaminidase, which is equivalent to the positive drug. In conclusion, the integrated strategy of fluorescence detection calcium ion kinetic method binding with biospecific cell fishing was an effective mode to identify and screen natural anti-allergic compounds.
Collapse
|
3
|
BmK NSPK, a Potent Potassium Channel Inhibitor from Scorpion Buthus martensii Karsch, Promotes Neurite Outgrowth via NGF/TrkA Signaling Pathway. Toxins (Basel) 2021; 13:toxins13010033. [PMID: 33466524 PMCID: PMC7824859 DOI: 10.3390/toxins13010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Scorpion toxins represent a variety of tools to explore molecular mechanisms and cellular signaling pathways of many biological functions. These toxins are also promising lead compounds for developing treatments for many neurological diseases. In the current study, we purified a new scorpion toxin designated as BmK NSPK (Buthus martensii Karsch neurite-stimulating peptide targeting Kv channels) from the BmK venom. The primary structure was determined using Edman degradation. BmK NSPK directly inhibited outward K+ current without affecting sodium channel activities, depolarized membrane, and increased spontaneous calcium oscillation in spinal cord neurons (SCNs) at low nanomolar concentrations. BmK NSPK produced a nonmonotonic increase on the neurite extension that peaked at ~10 nM. Mechanistic studies demonstrated that BmK NSPK increased the release of nerve growth factor (NGF). The tyrosine kinases A (TrkA) receptor inhibitor, GW 441756, eliminated the BmK NSPK-induced neurite outgrowth. BmK NSPK also increased phosphorylation levels of protein kinase B (Akt) that is the downstream regulator of TrkA receptors. These data demonstrate that BmK NSPK is a new voltage-gated potassium (Kv) channel inhibitor that augments neurite extension via NGF/TrkA signaling pathway. Kv channels may represent molecular targets to modulate SCN development and regeneration and to develop the treatments for spinal cord injury.
Collapse
|
4
|
Tang XM, Guo JL, Chen L, Ho PCL. Application for proteomics analysis technology in studying animal-derived traditional Chinese medicine: A review. J Pharm Biomed Anal 2020; 191:113609. [PMID: 32966940 DOI: 10.1016/j.jpba.2020.113609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
Different therapeutically active ingredients, from plants, animals, and mineral sources, are prescribed as traditional Chinese medicines (TCM). TCMs, from animal sources, are rich in proteins and peptides. Different advanced proteomics technologies, such as two-dimensional gel electrophoresis (2-DE), multi-dimensional liquid chromatography (MDLC), matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS), and isobaric tags for relative and absolute quantitation (iTRAQ), have been applied to analyze TCMs, from animal sources. This paper reviews the common proteomic techniques for analyzing animal - derived TCMs. Various scientific studies have reported the application of proteomics for locating drug targets, identifying active components, and elucidating the mechanisms of action of animal - derived TCMs. However, these researches are still at the preliminary stage. This review has also discussed the existing challenges and future directions in this field of research.
Collapse
Affiliation(s)
- Xue-Mei Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Lin Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Paul Chi-Lui Ho
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
5
|
van Cann M, Kuzmenkov A, Isensee J, Andreev-Andrievskiy A, Peigneur S, Khusainov G, Berkut A, Tytgat J, Vassilevski A, Hucho T. Scorpion toxin MeuNaTxα-1 sensitizes primary nociceptors by selective modulation of voltage-gated sodium channels. FEBS J 2020; 288:2418-2435. [PMID: 33051988 DOI: 10.1111/febs.15593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/14/2020] [Accepted: 10/09/2020] [Indexed: 11/27/2022]
Abstract
Venoms are a rich source of highly specific toxins, which allow the identification of novel therapeutic targets. We have now applied high content screening (HCS) microscopy to identify toxins that modulate pain sensitization signaling in primary sensory neurons of rat and elucidated the underlying mechanism. A set of venoms and fractions thereof were analyzed for their ability to activate type II protein kinase A (PKA-II) and extracellular signal-regulated kinases (ERK1/2). We identified MeuNaTxα-1, a sodium channel-selective scorpion α-toxin from Mesobuthus eupeus, which affected both PKA-II and ERK1/2. Recombinant MeuNaTxα-1 showed identical activity to the native toxin on mammalian voltage-gated sodium channels expressed in Xenopus laevis oocytes and induced thermal hyperalgesia in adult mice. The effect of MeuNaTxα-1 on sensory neurons was dose-dependent and tetrodotoxin-sensitive. Application of inhibitors and toxin mutants with altered sodium channel selectivity demonstrated that signaling activation in sensory neurons depends on NaV 1.2 isoform. Accordingly, the toxin was more potent in neurons from newborn rats, where NaV 1.2 is expressed at a higher level. Our results demonstrate that HCS microscopy-based monitoring of intracellular signaling is a novel and powerful tool to identify and characterize venoms and their toxins affecting sensory neurons.
Collapse
Affiliation(s)
- Marianne van Cann
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Germany
| | - Alexey Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Germany
| | | | | | - Georgii Khusainov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Antonina Berkut
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Belgium
| | - Alexander Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Germany
| |
Collapse
|
6
|
Zou X, Wang Y, Yu Y, He J, Zhao F, Xi C, Zhang C, Cao Z. BmK NSP, a new sodium channel activator from Buthus martensii Karsch, promotes neurite outgrowth in primary cultured spinal cord neurons. Toxicon 2020; 182:13-20. [PMID: 32353571 DOI: 10.1016/j.toxicon.2020.04.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Scorpion venom is a rich source of bioactive compounds that affect neuronal excitability by modulating the activities of various channels/receptors. In the current study, guided by a Ca2+ mobilization assay, we purified a new neuroactive peptide designated as BmK NSP (Buthus martensii Karsch neurite-stimulating peptide, MW: 7064.30 Da). The primary structure of BmK NSP was determined by Edman degradation. BmK NSP concentration-dependently elevated intracellular Ca2+ concentration ([Ca2+]i) with an EC50 value of 4.18 μM in primary cultured spinal cord neurons (SCNs). Depletion of extracellular Ca2+ abolished BmK NSP-triggered Ca2+ response. Moreover, we demonstrated that BmK NSP-induced Ca2+ response was partially suppressed by the inhibitors of L-type Ca2+ channels, Na+-Ca2+ exchangers and NMDA receptors and was abolished by voltage-gated sodium channel (VGSC) blocker, tetrodotoxin. Whole-cell patch clamp recording demonstrated that BmK NSP delayed VGSC inactivation (EC50 = 1.10 μM) in SCNs. BmK NSP enhanced neurite outgrowth in a non-monotonic manner that peaked at ~30 nM in SCNs. BmK NSP-promoted neurite outgrowth was suppressed by the inhibitors of L-type Ca2+ channels, NMDA receptors, and VGSCs. Considered together, these data demonstrate that BmK NSP is a new α-scorpion toxin that enhances neurite outgrowth through main routes of Ca2+ influx. Modulation of VGSC activity by α-scorpion toxin might represent a novel strategy to regulate the neurogenesis in SCNs.
Collapse
Affiliation(s)
- Xiaohan Zou
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yujing Wang
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yiyi Yu
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jing He
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Fang Zhao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Chuchu Xi
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chi Zhang
- Jiangsu Provincial Supervision & Inspection Center of Green & Degradable Materials, Nanjing Institute of Product Quality Inspection, No. 3 E. Jialingjiang Street, Nanjing, Jiangsu, 210019, China
| | - Zhengyu Cao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
7
|
Yang G, Ma H, Wu Y, Zhou B, Zhang C, Chai C, Cao Z. Activation of TRPC6 channels contributes to (+)-conocarpan-induced apoptotic cell death in HK-2 cells. Food Chem Toxicol 2019; 129:281-290. [PMID: 31054997 DOI: 10.1016/j.fct.2019.04.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
(+)-Conocarpan (CNCP), a neolignan frequently found in many medicinal and edible plants displays a broad spectrum of bioactivity. Here, we demonstrated that CNCP induced apoptotic cell death in human kidney-2 (HK-2) cells in a concentration-dependent manner (IC50 = 19.3 μM) and led to the sustained elevation of intracellular Ca2+ ([Ca2+]i). Lower extracellular Ca2+ concentrations from 2.3 mM to 0 mM significantly suppressed the CNCP-induced Ca2+ response by 69.1%. Moreover, the depletion of intracellular Ca2+ stores using thapsigargin normalized CNCP-induced Ca2+ release from intracellular Ca2+ stores, suggesting that the CNCP-induced Ca2+ response involved both extracellular Ca2+ influx and Ca2+ release from intracellular Ca2+ stores. SAR7334, a TRPC3/6/7 channel inhibitor, but neither Pyr3, a selective TRPC3 channel inhibitor, nor Pico145, a TRPC1/4/5 inhibitor, suppressed the CNCP-induced Ca2+ response by 57.2% and decreased CNCP-induced cell death by 53.4%, suggesting a critical role for TRPC6 channels in CNCP-induced Ca2+ influx and apoptotic cell death. Further electrophysiological recording demonstrated that CNCP directly activated TRPC6 channels by increasing channel open probability with an EC50 value of 6.01 μM. Considered together, these data demonstrate that the direct activation of TRPC6 channels contributes to CNCP-induced apoptotic cell death in HK-2 cells. Our data point out the potential risk of renal toxicity from CNCP if used as a therapeutic agent.
Collapse
Affiliation(s)
- Guoling Yang
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Hui Ma
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yanliang Wu
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Baoping Zhou
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chunlei Zhang
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chengzhi Chai
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
8
|
Shen L, Yang Q, He Y, Zou X, Cao Z. BmK NT1-induced neurotoxicity is mediated by PKC/CaMKⅡ-dependent ERK1/2 and p38 activation in primary cultured cerebellar granule cells. Toxicology 2019; 421:22-29. [PMID: 30940546 DOI: 10.1016/j.tox.2019.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 01/08/2023]
Abstract
Voltage-gated sodium channels (VGSCs) represent molecular targets for a number of potent neurotoxins that affect the ion permeation or gating kinetics. BmK NT1, an α-scorpion toxin purified from Buthus martensii Karch (BMK), induces excitatory neurotoxicity by activation of VGSCs with subsequent overloading of intracellular Ca2+ in cerebellar granule cells (CGCs). In the current study, we further investigated signaling pathways responsible for BmK NT1-induced neurotoxicity in CGCs. BmK NT1 exposure induced neuronal death in different development stages of CGCs with similar potencies ranging from 0.21-0.48 μM. The maximal neuronal death induced by BmK NT1 gradually increased from 25.6% at 7 days in vitro (DIVs) to 42.1%, 47.8%, and 67.2% at 10, 13, and 16 DIVs, respectively, suggesting that mature CGCs are more vulnerable to BmK NT1 exposure. Application of Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) inhibitors, KN-62 or KN-93, but not Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, STO-609, completely abolished BmK NT1-induced neuronal death. Moreover, BmK NT1 exposure stimulated CaMKⅡ phosphorylation. BmK NT1 also stimulated extracellular regulated protein kinases 1/2 (ERK1/2) and p38 phosphorylation which was abolished by tetrodotoxin demonstrating the role of VGSCs on BmK NT1-induced ERK1/2 and p38 phosphorylation. However, BmK NT1 didn't affect c-Jun N-terminal kinase (JNK) phosphorylation. In addition, both ERK1/2 inhibitor, U0126 and p38 inhibitor, SB203580 attenuated BmK NT1-induced neuronal death. Both PKC inhibitor, Gö 6983 and CaMKⅡ inhibitor, KN-62 abolished BmK NT1-induced ERK1/2 and p38 phosphorylation. Considered together, these data demonstrate that BmK NT1-induced neurotoxicity is through PKC/CaMKⅡ mediated ERK1/2 and p38 activation.
Collapse
Affiliation(s)
- Liping Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qundi Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yuwei He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
9
|
Gu L, Wang Y, Yang G, Tilyek A, Zhang C, Li S, Yu B, Chai C, Cao Z. Ribes diacanthum Pall (RDP) ameliorates UUO-induced renal fibrosis via both canonical and non-canonical TGF-β signaling pathways in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:302-310. [PMID: 30342194 DOI: 10.1016/j.jep.2018.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ribes diacanthum Pall (RDP), a folk medicine, has been widely used in Mongolia to treat urinary system diseases. AIM OF THE STUDY To investigate the effectiveness of RDP on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis and the underlying mechanisms. MATERIALS AND METHODS A total of 60 mice were randomly divided into six groups: sham group, sham plus RDP (40 mg/kg) group, UUO model group, and UUO model plus RDP (10, 20 or 40 mg/kg) groups. After surgery, aqueous extract of RDP were administrated intragastrically (i.g) daily for a week and ipsilateral kidneys were collected seven days after surgery. Levels of blood urea nitrogen (BUN) and serum creatinine (Scr) were detected to reflect the kidney injury. Hematoxylin & eosin and Masson's trichrome staining were used to evaluate the kidney morphological changes and fibrosis, respectively. ELISA was used to examine the levels of pro-inflammatory cytokines. Immunohistochemistry, western blot and PCR were used to examine the expression levels of key proteins involved in transforming growth factor (TGF-β)/Smad and mitogen-activated protein kinase (MAPK) signaling pathways. RESULTS RDP treatment attenuates the level of BUN and kidney fibrosis in UUO mice, decreases the expressions of interleukin-6, tumor necrosis factor-α, Interleukin-1α, TGF-β1, monocyte chemotactic protein-1, α-smooth muscle actin, collagen I, fibronectin, and vimentin, while increases the expressions of E-cadherin and hepatocyte growth factor. Moreover, RDP administration significantly decreases the levels of p-Smad2/3, p-ERK1/2, p-p38 and p-JNK, while increases the expression level of Smad7 in UUO models. CONCLUSION These data demonstrate that RDP ameliorates renal fibrosis through TGF-β/Smad and MAPK pathways in a UUO mouse model.
Collapse
Affiliation(s)
- Lifei Gu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yange Wang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Guolin Yang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Akhtolkhyn Tilyek
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chunlei Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shaoheng Li
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chengzhi Chai
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Zhengyu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
10
|
Zhang F, Wu Y, Zou X, Tang Q, Zhao F, Cao Z. BmK AEP, an Anti-Epileptic Peptide Distinctly Affects the Gating of Brain Subtypes of Voltage-Gated Sodium Channels. Int J Mol Sci 2019; 20:ijms20030729. [PMID: 30744067 PMCID: PMC6387193 DOI: 10.3390/ijms20030729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
BmK AEP, a scorpion peptide purified form the venom of Buthus martensii Karsch, has been reported to display anti-epileptic activity. Voltage-gated sodium channels (VGSCs) are responsible for the rising phase of action potentials (APs) in neurons and, therefore, controlling neuronal excitability. To elucidate the potential molecular mechanisms responsible for its anti-epileptic activity, we examined the influence of BmK AEP on AP firing in cortical neurons and how BmK AEP influences brain subtypes of VGSCs (Nav1.1–1.3 and Nav1.6). BmK AEP concentration-dependently suppresses neuronal excitability (AP firing) in primary cultured cortical neurons. Consistent with its inhibitory effect on AP generation, BmK AEP inhibits Na+ peak current in cortical neurons with an IC50 value of 2.12 µM by shifting the half-maximal voltage of activation of VGSC to hyperpolarized direction by ~7.83 mV without affecting the steady-state inactivation. Similar to its action on Na+ currents in cortical neurons, BmK AEP concentration-dependently suppresses the Na+ currents of Nav1.1, Nav1.3, and Nav1.6, which were heterologously expressed in HEK-293 cells, with IC50 values of 3.20, 1.46, and 0.39 µM with maximum inhibition of 82%, 56%, and 93%, respectively. BmK AEP shifts the voltage-dependent activation in the hyperpolarized direction by ~15.60 mV, ~9.97 mV, and ~6.73 mV in Nav1.1, Nav1.3, and Nav1.6, respectively, with minimal effect on steady-state inactivation. In contrast, BmK AEP minimally suppresses Nav1.2 currents (~15%) but delays the inactivation of the channel with an IC50 value of 1.69 µM. Considered together, these data demonstrate that BmK AEP is a relatively selective Nav1.6 gating modifier which distinctly affects the gating of brain subtypes of VGSCs.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ying Wu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|