1
|
Li K, Xu H, Liu Y, Zhong W, Jin Y, Wu W. Exploring the relationship between lignin structure and antioxidant property using lignin model compounds. Int J Biol Macromol 2024; 282:136786. [PMID: 39442847 DOI: 10.1016/j.ijbiomac.2024.136786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Lignin has a natural polyphenol structure that is expected to replace chemically synthesized antioxidants as a native antioxidant with biodegradable and convenient source characteristics. However, the improvement of the antioxidant property of lignin and its application as an antioxidant are still somewhat limited due to the lack of understanding of the relationship between specific lignin structures and antioxidant property. Therefore, the study of the relationship between lignin structure and antioxidant property is crucial to realize the high-quality application of lignin. In this experiment, the scavenging ability of free 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radicals was determined for different grades of acetylated tannins, typical lignin model compounds and different structural units of milled wood lignin to investigate the relationship between lignin structure and antioxidant property. Based on the experimental results, some structure-activity relationships were proposed and the mechanism of the antioxidant property of lignin was discussed. The number of phenolic hydroxyl groups was linearly and positively correlated with antioxidant property, and the scavenging of DPPH radicals increased significantly with the increase in the number of methoxy groups in the model compounds. Moreover, aldehyde and carboxyl groups had a negative effect on the antioxidant property of lignin, while methoxy, alkyl and alcohol hydroxyl groups played a positive role. The guaiacyl (G) and syringyl (S) units favored the antioxidant property, so the difference in the content of structural units in lignin under certain conditions of phenolic hydroxyl content also affected the antioxidant property. Therefore, the antioxidant property of aspen milled lignin was higher than that of other milled lignin from different wood species. Finally, the mechanism of DPPH free radical scavenging by lignin was revealed to better understand the relationship between lignin structure and antioxidant property.
Collapse
Affiliation(s)
- KongYan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - HuaiYu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - YiRun Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - YongCan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - WenJuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Zhao ZM, Liu ZH, Zhang T, Meng R, Gong Z, Li Y, Hu J, Ragauskas AJ, Li BZ, Yuan YJ. Unleashing the capacity of Rhodococcus for converting lignin into lipids. Biotechnol Adv 2024; 70:108274. [PMID: 37913947 DOI: 10.1016/j.biotechadv.2023.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Bioconversion of bioresources/wastes (e.g., lignin, chemical pulping byproducts) represents a promising approach for developing a bioeconomy to help address growing energy and materials demands. Rhodococcus, a promising microbial strain, utilizes numerous carbon sources to produce lipids, which are precursors for synthesizing biodiesel and aviation fuels. However, compared to chemical conversion, bioconversion involves living cells, which is a more complex system that needs further understanding and upgrading. Various wastes amenable to bioconversion are reviewed herein to highlight the potential of Rhodococci for producing lipid-derived bioproducts. In light of the abundant availability of these substrates, Rhodococcus' metabolic pathways converting them to lipids are analyzed from a "beginning-to-end" view. Based on an in-depth understanding of microbial metabolic routes, genetic modifications of Rhodococcus by employing emerging tools (e.g., multiplex genome editing, biosensors, and genome-scale metabolic models) are presented for promoting the bioconversion. Co-solvent enhanced lignocellulose fractionation (CELF) strategy facilitates the generation of a lignin-derived aromatic stream suitable for the Rhodococcus' utilization. Novel alkali sterilization (AS) and elimination of thermal sterilization (ETS) approaches can significantly enhance the bioaccessibility of lignin and its derived aromatics in aqueous fermentation media, which promotes lipid titer significantly. In order to achieve value-added utilization of lignin, biodiesel and aviation fuel synthesis from lignin and lipids are further discussed. The possible directions for unleashing the capacity of Rhodococcus through synergistically modifying microbial strains, substrates, and fermentation processes are proposed toward a sustainable biological lignin valorization.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tongtong Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Rongqian Meng
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiqun Gong
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yibing Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jing Hu
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, United States; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Latif NHA, Brosse N, Ziegler-Devin I, Chrusiel L, Hashim R, Hussin MH. Structural characterization of modified coconut husk lignin via steam explosion pretreatment as a renewable phenol substitutes. Int J Biol Macromol 2023; 253:127210. [PMID: 37797852 DOI: 10.1016/j.ijbiomac.2023.127210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The effects of steam explosion (SE) pretreatment on the structural properties of lignin isolated from coconut husk (CH) biomass via soda pulping were investigated in this work. The isolated SE lignin was classified as dilute acid impregnation SE lignin (ASEL), water impregnation SE lignin (WSEL), and 2-naphthol impregnation SE lignin (NSEL). The various types of functional groups isolated from SE lignin were characterized and compared using a variety of complementary analyses: FTIR spectroscopy, NMR spectroscopy, GPC chromatography, HPAEC-PAD chromatography and thermal analyses. It was revealed that ASEL has the highest solid recovery with 55.89 % yield as well as the highest sugars content compared to WSEL (45.66 % yield) and NSEL (49.37 % yield). Besides, all isolated SE lignin contain a significant quantity of non-condensed G-type and S-type units but less amount of H-type units as supported by previous research. The SE lignin produced lignin with higher molecular weight (Mw ASEL: 72725 g mol-1 > Mw WSEL: 13112 g mol-1 > Mw NSEL: 6891 g mol-1) seems to influence the success of the synthesis reaction of phenolic resins. Because of the large variances in the physicochemical properties of SE lignin polymers, their structural properties were increased toward numerous alternative techniques in lignin-based applications.
Collapse
Affiliation(s)
- Nur Hanis Abd Latif
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Isabelle Ziegler-Devin
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Laurent Chrusiel
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Rokiah Hashim
- School of Technology Industrial, Universiti Sains Malaysia, 11800 Minden, Malaysia
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia.
| |
Collapse
|
4
|
Zeng S, Ma Q, Zhang S, Shen C, Li J, Zhao H, Guo D, Zhang Y, Yang H. Evaluation of oxy-organosolv pretreatment on lignin extraction from wheat straw. Int J Biol Macromol 2023; 229:861-872. [PMID: 36587642 DOI: 10.1016/j.ijbiomac.2022.12.301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
To develop a characteristic "Lignin-first" strategy, the oxy-organosolv delignification processes under mild conditions were comprehensively investigated. Results showed that lignin yield could achieve about 50 % under the optimum process conditions of ethanol concentration 80 %, temperature 90 °C, liquid to wheat straw ratio 25:1 for powdery-scale substrates, which was 65.0 % higher than that for rod-scale substrates under the same conditions. The lignin structural and carbohydrate component results demonstrated the employment of oxygen induced great quantities of lignin dissolving out on the premise of little carbohydrate component (<1 %) and lignin structural (mainly β-O-4 units) changes. Moreover, based on the molecular weight and polydiversity comparison results, the aqueous oxygen could transfer homogeneously in mild organosolv system and result in lignin degradation uniformly. Besides, the employment of oxygen assisted in not only extending the massive lignin removal stage to 30 min and 50 min for P-OEEL and R-OEEL respectively, but also boost the delignification rate with comparison to P-EL and R-EL. Lastly, the excellent anti-oxidant properties of lignin from oxy-organosolv process were demonstrated by scavenging DPPH and ABTS radicals. The economic calculations showed that the cost for lignin production were about 1.58USD/g lignin from powdery-scale wheat straw, providing a competitive route for high-value utilize waste biomass.
Collapse
Affiliation(s)
- Shiyi Zeng
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Qingzhi Ma
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Shenchong Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Conghao Shen
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Jing Li
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China.
| | - Huifang Zhao
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Daliang Guo
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Yan Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Hui Yang
- Pinghu Longchen Greentech Co., Ltd, Jiaxing, Zhejiang Province, China
| |
Collapse
|
5
|
Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho SH, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. NANO-MICRO LETTERS 2023; 15:35. [PMID: 36629933 PMCID: PMC9833044 DOI: 10.1007/s40820-022-00993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg-1 and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m2 g-1 via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m-2 via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
Collapse
Affiliation(s)
- Fanghua Li
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yiwei Li
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - K S Novoselov
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Hui Zhou
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014, Cordoba, Spain
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Liangxing Hu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Dongxiao Ji
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Litao Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Zhang Y, Li Y, Su X, Liu L, Sun W, Li J, Feng Y, Geng Y, Cheng G. Improving the solubility of tetrahydropalmatine by introducing sulfonic acid by forming pharmaceutical salts of tetrahydropalmatine with supramolecular helical structure via CAHBs. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Cassoni AC, Costa P, Vasconcelos MW, Pintado M. Systematic review on lignin valorization in the agro-food system: From sources to applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115258. [PMID: 35751227 DOI: 10.1016/j.jenvman.2022.115258] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic biomass is the most abundant renewable resource on earth and currently most of this biomass is considered a low-value waste. Specifically, lignin is an underrated bioresource that is mostly burned for energy production and few value-added products have been created. Since the agro-food industry produces large amounts of wastes that can be potential sources of high-quality lignin, scientific efforts should be directed to this industry. Thus, this review provides a systematic overview of the trends and evolution of research on agro-food system-derived lignin (from 2010 to 2020), including the extraction of lignin from various agro-food sources and emergent applications of lignin in the agro-food chain. Crops with the highest average production/year (n = 26) were selected as potential lignin sources. The extraction process efficiency (yield) and lignin purity were used as indicators of the raw material potential. Overall, it is notable that research interest on agro-food lignin has increased exponentially over the years, both as source (567%) and application (128%). Wheat, sugarcane, and maize are the most studied sources and are the ones that render the highest lignin yields. As for the extraction methods used, alkaline and organosolv methods are the most employed (∼50%). The main reported applications are related to lignin incorporation in polymers (∼55%) and as antioxidant (∼24%). Studies on agro-food system-derived lignin is of most importance since there are numerous possible sources that are yet to be fully valorized and many promising applications that need to be further developed.
Collapse
Affiliation(s)
- Ana C Cassoni
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Patrícia Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
8
|
Pongchaiphol S, Suriyachai N, Hararak B, Raita M, Laosiripojana N, Champreda V. Physicochemical characteristics of organosolv lignins from different lignocellulosic agricultural wastes. Int J Biol Macromol 2022; 216:710-727. [PMID: 35803411 DOI: 10.1016/j.ijbiomac.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Lignin is a promising alternative to petrochemical precursors for conversion to industrial-needed products. Organosolv lignins were extracted from different agricultural wastes including sugarcane bagasse (BG) and trash (ST), corncob (CC), eucalyptus wood (EW), pararubber woodchip (PRW), and palm wastes (palm kernel cake (PKC), palm fiber (PF), and palm kernel shell (PKS), representing different groups of lignin origins. Physicochemical characteristics of lignins were analyzed by several principal techniques. Most recovered lignin showed high purity of >90 % with trace sugar contamination, while lower purities were found for lignin from palm wastes. Hardwood lignins (EW and PRW) mainly contained guaiacyl (G) and syringyl (S) units with a minor fraction of p-hydroxyphenyl units (H) with high molecular weight, glass transition temperature, phenolic hydroxy group and low aliphatic hydroxy group. Grass-type lignins (BG, ST, CC) and palm lignins (PKC, PF, and PKS) contained three monolignols of H, G, and S units with lower molecular weights and C5-substituted hydroxy of S unit. Among the grass-type lignins, PKC lignin contained the highest nitrogen and lipophilic components with the lowest molecular weight, thermal stability, and glass transition temperature. This provides insights into properties of organosolv lignin as basis for their further applications in chemical, polymer and material industries.
Collapse
Affiliation(s)
- Suchat Pongchaiphol
- The Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand; BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Nopparat Suriyachai
- BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand; School of Energy and Environment, University of Phayao, Tambon Maeka, Amphur Muang, Phayao 56000, Thailand
| | - Bongkot Hararak
- National Metal and Materials Technology Center (MTEC), 114 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Marisa Raita
- The Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand; BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand.
| | - Navadol Laosiripojana
- The Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand; BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Champreda
- Biorefinery Technology and Bioproducts Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand; BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
9
|
Lu X, Gu X, Shi Y. A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. Int J Biol Macromol 2022; 210:716-741. [PMID: 35526770 DOI: 10.1016/j.ijbiomac.2022.04.228] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Lignin, a biopolymer obtained from agricultural/forestry residues or paper pulping wastewater, is rich in aromatic structure, which is central to its adoption as a candidate to natural antioxidants. Through insight into its structural features from biomass, different functional groups would influence lignin antioxidant activity, wherein phenolic content is the most important factor, hence massive studies have focused on its improvement via different pretreatments and post-processing methods. Besides, lignin nanoparticles and chemical modifications are also efficient methods to improve antioxidant activity via increasing free content and decreasing bond dissociation enthalpy of phenolic hydroxyl. Lignin samples exhibit comparable radicals scavenging ability to commercial ones, showing their potential as renewable alternatives of synthesized antioxidants. Besides, their applications have also been discussed, which demonstrates lignin potential as an inexpensive antioxidant additive and consequent improvements on multiple functionalities. This review is dedicated to summarize lignin antioxidants extracted from biomass resources, methods to improve their antioxidant activity and their applications, which is beneficial for realizing lignin valorization.
Collapse
Affiliation(s)
- Xinyu Lu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Xiaoli Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China.
| | - Yijun Shi
- Division of Machine Elements, Luleå University of Technology, SE97187 Luleå, Sweden.
| |
Collapse
|
10
|
Du B, Li W, Bai Y, Pan Z, Wang Q, Wang X, Ding H, Lv G, Zhou J. Fabrication of uniform lignin nanoparticles with tunable size for potential wound healing application. Int J Biol Macromol 2022; 214:170-180. [PMID: 35709869 DOI: 10.1016/j.ijbiomac.2022.06.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
The construction of lignin nanoparticles (LNPs) with both lignin properties and nanomaterial properties through controlling the morphologies and structures of lignin is one of the effective ways to realize its application in the field of biomedicine. Firstly, the morphology and chemical structure of LNPs were studied in detailed. The results showed that the chemical structural characteristics of LNPs had not changed significantly and its morphology was more regular shape and narrower size distribution (50-350 nm). Besides, LNPs also exhibited excellent water dispersion stability and high negative zeta potential. Subsequently, LNPs as wound dressings had good antioxidant property, excellent adsorption capacity of protein, outstanding bactericidal activity and remarkable biocompatibility, suggesting that LNPs did not interfere with cell proliferation during wound healing. Finally, the in vivo results of mouse wounds further illustrated that treatment of wounded skin wounds with LNPs enhanced its effective healing. After 15 days, as compared with the untreated control and original lignin (OL) groups, the wounds treated of LNPs was completely closed and granulation tissue formation was advanced. Overall, this study can be a good method for high-value applications of LNPs, and highlighting the advantages of using lignin as medical adjuvant nanomaterials to accelerate wound healing.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Wanjing Li
- Department of Cardiology, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - Yating Bai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Zheng Pan
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China; State Key Laboratory of Bio-based Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Hui Ding
- Department of Cardiology, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an 710018, China.
| | - Gaojin Lv
- State Key Laboratory of Bio-based Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| |
Collapse
|
11
|
Sheng Y, Ma Z, Wang X, Han Y. Ethanol organosolv lignin from different agricultural residues: Toward basic structural units and antioxidant activity. Food Chem 2021; 376:131895. [PMID: 34971896 DOI: 10.1016/j.foodchem.2021.131895] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
The growing interest in the substitution of synthetic food antioxidants by natural ones has fostered research on vegetable sources and the screening of raw materials for identifying new antioxidants. Special attention is focused on their extraction from inexpensive or residual sources from agricultural industries. Herein, the antioxidant activities of lignin obtained from 4 residual sources were investigated. The obtained lignin samples were characterized by different analytical techniques evaluating their chemical structure, phenolic content, thermal behavior and molecular weight. The antioxidant activity of the analyzed lignins was evaluated by the DPPH assay, the radical ABTS assay, and trivalent iron reduction method. It was found t that lignin antioxidants could scavenge free radicals and reduce oxidants. The high correlation between antioxidant capacity and its total phenol content indicated that phenolic hydroxyl groups were the main contributors to these lignins' antioxidant activity.
Collapse
Affiliation(s)
- Yuanyuan Sheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian 116034, China.
| | - Ying Han
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
12
|
Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH. Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 2020; 162:985-1024. [DOI: 10.1016/j.ijbiomac.2020.06.168] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
|
13
|
Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci Rep 2020; 10:11048. [PMID: 32632234 PMCID: PMC7338370 DOI: 10.1038/s41598-020-68047-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
In this work, spent coffee grounds (SCG) were treated using sulfuric acid hydrolysis in order to isolate the sulfuric acid lignin (SAL). The reactivity of SAL was improved through phenolation and acetylation. Spectroscopic analysis showed that the isolated lignin is composed of GHS type and it was characterized by a high amount of (C-C) and β-O-4 bonds. The thermal analysis showed that the phenolated sulfuric acid lignin (Ph-SAL) present higher thermal stability compared to SAL and acetylated sulfuric acid lignin. In addition, the phenolic hydroxyl group content increases from 2.99 to 9.49 mmol/g after phenolation. Moreover, a methylene blue (MB) adsorption test was established in order to find out the sorption capacity of different samples. The study showed that the adsorbed amount of dye increase after the chemical modification of SAL, especially after phenolation. The removal efficiency was enhanced after modification to reach 99.62% for Ph-SAL. The evaluation of the adsorption experimental data with the theoretical models of Langmuir and Freundlich showed that the best fitting was expressed by the Langmuir model for all samples. Finally, this study showed that lignin isolated from SCG can be simply and easily chemical modified and exhibits excellent adsorption ability towards cationic dyes (MB) in aqueous solutions. As a renewable, low-cost, and natural biomass material, lignin from SCG shows a promising practical and economical application of biomass in the field of wastewater purification.
Collapse
|
14
|
Latif NHA, Rahim AA, Brosse N, Hussin MH. The structural characterization and antioxidant properties of oil palm fronds lignin incorporated with p-hydroxyacetophenone. Int J Biol Macromol 2019; 130:947-957. [DOI: 10.1016/j.ijbiomac.2019.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022]
|
15
|
de Menezes Nogueira I, Avelino F, de Oliveira DR, Souza NF, Rosa MF, Mazzetto SE, Lomonaco D. Organic solvent fractionation of acetosolv palm oil lignin: The role of its structure on the antioxidant activity. Int J Biol Macromol 2019; 122:1163-1172. [DOI: 10.1016/j.ijbiomac.2018.09.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
|
16
|
Zhai R, Hu J, Saddler JN. Minimizing cellulase inhibition of whole slurry biomass hydrolysis through the addition of carbocation scavengers during acid-catalyzed pretreatment. BIORESOURCE TECHNOLOGY 2018; 258:12-17. [PMID: 29518686 DOI: 10.1016/j.biortech.2018.02.124] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 05/20/2023]
Abstract
The aim of this work was to study how to minimize cellulase inhibition of whole slurry biomass hydrolysis through addition of carbocation scavengers during acid-catalyzed pretreatment. Various potential carbocation scavengers were compared and their inhibition mitigating effects towards the hydrolytic performance of cellulase enzymes was assessed. The results indicated that the addition of carbocation scavengers during the pretreatment process could not only alleviate the inhibitory effect of the phenolics on the enzymatic hydrolysis but also increase the accessibility of cellulases to the pretreated substrates. It appeared that lignin-derived compounds such as 4-hydroxybenzoic acid, vanillic acid, syringic acid could all serve as efficient scavengers to alleviate the inhibitory effect of phenolics on cellulose hydrolysis where the syringic acid showed the best mitigating effect. By combining the carbocation scavengers in the pretreatment process, an improved cellulose hydrolysis of the pretreated whole slurry could be achieved without any post detoxification step.
Collapse
Affiliation(s)
- Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada
| | - Jinguang Hu
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada.
| | - Jack N Saddler
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada
| |
Collapse
|