1
|
Gonçalves G, da Silva MS, dos Santos LA, Guimarães TZ, Taveira GB, Almeida FA, Ferreira SR, Amancio Oliveira AE, Nagano CS, Chaves RP, Silveira V, de Oliveira Carvalho A, Rodrigues R, Gomes VM. Structural and Functional Characterization of New Lipid Transfer Proteins with Chitin-Binding Properties: Insights from Protein Structure Prediction, Molecular Docking, and Antifungal Activity. Biochemistry 2024; 63:1824-1836. [PMID: 38968244 PMCID: PMC11256766 DOI: 10.1021/acs.biochem.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024]
Abstract
Faced with the emergence of multiresistant microorganisms that affect human health, microbial agents have become a serious global threat, affecting human health and plant crops. Antimicrobial peptides have attracted significant attention in research for the development of new microbial control agents. This work's goal was the structural characterization and analysis of antifungal activity of chitin-binding peptides from Capsicum baccatum and Capsicum frutescens seeds on the growth of Candida and Fusarium species. Proteins were initially submitted to extraction in phosphate buffer pH 5.4 and subjected to chitin column chromatography. Posteriorly, two fractions were obtained for each species, Cb-F1 and Cf-F1 and Cb-F2 and Cf-F2, respectively. The Cb-F1 (C. baccatum) and Cf-F1 (C. frutescens) fractions did not bind to the chitin column. The electrophoresis results obtained after chromatography showed two major protein bands between 3.4 and 14.2 kDa for Cb-F2. For Cf-F2, three major bands were identified between 6.5 and 14.2 kDa. One band from each species was subjected to mass spectrometry, and both bands showed similarity to nonspecific lipid transfer protein. Candida albicans and Candida tropicalis had their growth inhibited by Cb-F2. Cf-F2 inhibited the development of C. albicans but did not inhibit the growth of C. tropicalis. Both fractions were unable to inhibit the growth of Fusarium species. The toxicity of the fractions was tested in vivo on Galleria mellonella larvae, and both showed a low toxicity rate at high concentrations. As a result, the fractions have enormous promise for the creation of novel antifungal compounds.
Collapse
Affiliation(s)
- Gabriella
Rodrigues Gonçalves
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Marciele Souza da Silva
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Layrana Azevedo dos Santos
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Thomas Zacarone
Afonso Guimarães
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Gabriel Bonan Taveira
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Felipe Astolpho Almeida
- Laboratório
de Química e Função de Proteínas e Peptídeos,
Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos
dos Goytacazes, RJ, Brazil
| | - Sarah Rodrigues Ferreira
- Laboratório
de Química e Função de Proteínas e Peptídeos,
Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos
dos Goytacazes, RJ, Brazil
| | - Antonia Elenir Amancio Oliveira
- Laboratório
de Química e Função de Proteínas e Peptídeos,
Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos
dos Goytacazes, RJ, Brazil
| | - Celso Shiniti Nagano
- Laboratório
de Bioquímica Marinha (BioMar-Lab), Departamento de Engenharia
de Pesca, Universidade Federal do Ceará
(UFC), 60455-900 Fortaleza, Ceará, Brazil
| | - Renata Pinheiro Chaves
- Laboratório
de Bioquímica Marinha (BioMar-Lab), Departamento de Engenharia
de Pesca, Universidade Federal do Ceará
(UFC), 60455-900 Fortaleza, Ceará, Brazil
| | - Vanildo Silveira
- Laboratório
de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602 RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratório
de Melhoramento e Genética Vegetal, Centro de Ciências
e Tecnologias Agropecuárias, Universidade
Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
2
|
Ricci A, Lazzi C, Bernini V. Natural Antimicrobials: A Reservoir to Contrast Listeria monocytogenes. Microorganisms 2023; 11:2568. [PMID: 37894226 PMCID: PMC10609241 DOI: 10.3390/microorganisms11102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Natural environments possess a reservoir of compounds exerting antimicrobial activity that are forms of defence for some organisms against others. Recently, they have become more and more attractive in the food sector due to the increasing demand for natural compounds that have the capacity to protect food from pathogenic microorganisms. Among foodborne pathogens, Listeria monocytogenes can contaminate food during production, distribution, or storage, and its presence is especially detected in fresh, raw food and ready-to-eat products. The interest in this microorganism is related to listeriosis, a severe disease with a high mortality rate that can occur after its ingestion. Starting from this premise, the present review aims to investigate plant extract and fermented plant matrices, as well as the compounds or mixtures of compounds produced during microbial fermentation processes that have anti-listeria activity.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Viale delle Scienze, 49/A, 43124 Parma, Italy; (C.L.); (V.B.)
| | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Viale delle Scienze, 49/A, 43124 Parma, Italy; (C.L.); (V.B.)
- SITEIA.PARMA, Viale delle Scienze, Tecnopolo, Padiglione 33, 43124 Parma, Italy
| | - Valentina Bernini
- Department of Food and Drug, University of Parma, Viale delle Scienze, 49/A, 43124 Parma, Italy; (C.L.); (V.B.)
- SITEIA.PARMA, Viale delle Scienze, Tecnopolo, Padiglione 33, 43124 Parma, Italy
| |
Collapse
|
3
|
Wei H, Liu G, Qin J, Zhang Y, Chen J, Zhang X, Yu C, Chen Y, Lian B, Zhong F, Movahedi A, Zhang J. Genome-wide characterization, chromosome localization, and expression profile analysis of poplar non-specific lipid transfer proteins. Int J Biol Macromol 2023; 231:123226. [PMID: 36641014 DOI: 10.1016/j.ijbiomac.2023.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small and have a broad biological function involved in reproductive development and abiotic stress resistance. Although a small part of plant nsLTPs have been identified, these proteins have not been characterized in poplar at the genomic level. A genome-wide characterization and expression identification of poplar nsLTP members were performed in this study. A total of 42 poplar nsLTP genes were identified from the poplar genome. A comprehensive analysis of poplar nsLTPs was conducted by a phylogenetic tree, duplication events, gene structures, and conserved motifs. The cis-elements of poplar nsLTPs were predicted to respond to light, hormone, and abiotic stress. Many transcription factors (TFs) were identified to interact with poplar nsLTP cis-elements. The tested poplar nsLTPs were expressed in leaves, stems, and roots, but their expression levels differed among tested tissues. Most poplar nsLTP expression levels were changed by abiotic stress, implying that poplar nsLTP may be involved in abiotic stress resistance. Network analysis showed that poplar nsLTPs are putative genes involved in fatty acid (FA) metabolism. This research provides sight into the further study to explain the regulatory mechanism of the poplar nsLTPs.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Yanyan Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
4
|
Gao H, Ma K, Ji G, Pan L, Zhou Q. Lipid transfer proteins involved in plant-pathogen interactions and their molecular mechanisms. MOLECULAR PLANT PATHOLOGY 2022; 23:1815-1829. [PMID: 36052490 PMCID: PMC9644281 DOI: 10.1111/mpp.13264] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine-rich proteins that play numerous functional roles in plant growth and development, including cutin wax formation, pollen tube adhesion, cell expansion, seed development, germination, and adaptation to changing environmental conditions. LTPs contain eight conserved cysteine residues and a hydrophobic cavity that provides a wide variety of lipid-binding specificities. As members of the pathogenesis-related protein 14 family (PR14), many LTPs inhibit fungal or bacterial growth, and act as positive regulators in plant disease resistance. Over the past decade, these essential immunity-related roles of LTPs in plant immune processes have been documented in a growing body of literature. In this review, we summarize the roles of LTPs in plant-pathogen interactions, emphasizing the underlying molecular mechanisms in plant immune responses and specific LTP functions.
Collapse
Affiliation(s)
- Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Guojie Ji
- Experimental Teaching Center of Biology and Basic MedicineSanquan College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Liying Pan
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| |
Collapse
|
5
|
Amador VC, dos Santos-Silva CA, Vilela LMB, Oliveira-Lima M, de Santana Rêgo M, Roldan-Filho RS, de Oliveira-Silva RL, Lemos AB, de Oliveira WD, Ferreira-Neto JRC, Crovella S, Benko-Iseppon AM. Lipid Transfer Proteins (LTPs)-Structure, Diversity and Roles beyond Antimicrobial Activity. Antibiotics (Basel) 2021; 10:1281. [PMID: 34827219 PMCID: PMC8615156 DOI: 10.3390/antibiotics10111281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023] Open
Abstract
Lipid transfer proteins (LTPs) are among the most promising plant-exclusive antimicrobial peptides (AMPs). They figure among the most challenging AMPs from the point of view of their structural diversity, functions and biotechnological applications. This review presents a current picture of the LTP research, addressing not only their structural, evolutionary and further predicted functional aspects. Traditionally, LTPs have been identified by their direct isolation by biochemical techniques, whereas omics data and bioinformatics deserve special attention for their potential to bring new insights. In this context, new possible functions have been identified revealing that LTPs are actually multipurpose, with many additional predicted roles. Despite some challenges due to the toxicity and allergenicity of LTPs, a systematic review and search in patent databases, indicate promising perspectives for the biotechnological use of LTPs in human health and also plant defense.
Collapse
Affiliation(s)
- Vinícius Costa Amador
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Carlos André dos Santos-Silva
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34100 Trieste, Italy;
| | - Lívia Maria Batista Vilela
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Marx Oliveira-Lima
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Mireli de Santana Rêgo
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Ricardo Salas Roldan-Filho
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Roberta Lane de Oliveira-Silva
- General Microbiology Laboratory, Agricultural Science Campus, Universidade Federal do Vale do São Francisco, Petrolina 56300-990, Brazil;
| | - Ayug Bezerra Lemos
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Wilson Dias de Oliveira
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - José Ribamar Costa Ferreira-Neto
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Sérgio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha 1883, Qatar;
| | - Ana Maria Benko-Iseppon
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| |
Collapse
|
6
|
Maximiano MR, Franco OL. Biotechnological applications of versatile plant lipid transfer proteins (LTPs). Peptides 2021; 140:170531. [PMID: 33746031 DOI: 10.1016/j.peptides.2021.170531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Plant AMPs are usually cysteine-rich, and can be classified in several classes, including lipid transfer proteins (LTPs). LTPs are small plant cationic peptides, and can be classified in two subclasses, LTP1 (9-10 kDa) and LTP2 (7 kDa). They have been identified and isolated from various plant species and can be involved in a number of processes, including responses against several phytopathogens. LTP1 presents 4 parallel α- helices and a 310-helix fragment. These structures form a tunnel with large and small entrances. LTP2 presents 3 parallel α- helices, which form a cavity with triangular structure. Both LTP subclasses present a hydrophobic cavity, which makes interaction with different lipids and general hydrophobic molecules possible. Several studies report a broad spectrum of activity of plant LTPs, including antibacterial, antifungal, antiviral, antitumoral, and insecticidal activity. Thus, these molecules can be employed in human and animal health as an alternative to the conventional treatment of disease, well as providing the source of novel drugs. However, employing peptides in human health can present challenges, such as the toxicity of peptides, the difference between the results found in in vitro assays and in pre-clinical or clinical tests and their low efficiency against Gram-negative bacteria. In this context, plant LTPs can be an interesting alternative means by which to bypass such challenges. This review addresses the versatility of plant LTPs, their broad spectrum of activities and their potential applications in human and animal health and in agricultural production, and examines challenges in their biotechnological application.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
7
|
Barbosa MS, da Silva Souza B, Silva Sales AC, de Sousa JDL, da Silva FDS, Araújo Mendes MG, da Costa KRL, de Oliveira TM, Daboit TC, de Oliveira JS. Antifungal Proteins from Plant Latex. Curr Protein Pept Sci 2019; 21:497-506. [PMID: 31746293 DOI: 10.2174/1389203720666191119101756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023]
Abstract
Latex, a milky fluid found in several plants, is widely used for many purposes, and its proteins have been investigated by researchers. Many studies have shown that latex produced by some plant species is a natural source of biologically active compounds, and many of the hydrolytic enzymes are related to health benefits. Research on the characterization and industrial and pharmaceutical utility of latex has progressed in recent years. Latex proteins are associated with plants' defense mechanisms, against attacks by fungi. In this respect, there are several biotechnological applications of antifungal proteins. Some findings reveal that antifungal proteins inhibit fungi by interrupting the synthesis of fungal cell walls or rupturing the membrane. Moreover, both phytopathogenic and clinical fungal strains are susceptible to latex proteins. The present review describes some important features of proteins isolated from plant latex which presented in vitro antifungal activities: protein classification, function, molecular weight, isoelectric point, as well as the fungal species that are inhibited by them. We also discuss their mechanisms of action.
Collapse
Affiliation(s)
- Mayck Silva Barbosa
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Bruna da Silva Souza
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Ana Clara Silva Sales
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Jhoana D'arc Lopes de Sousa
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | | | - Maria Gabriela Araújo Mendes
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Káritta Raquel Lustoza da Costa
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Taiane Maria de Oliveira
- Research Center on Biodiversity and Biotechnology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Tatiane Caroline Daboit
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Jefferson Soares de Oliveira
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| |
Collapse
|
8
|
A recombinant isoform of the Ole e 7 olive pollen allergen assembled by de novo mass spectrometry retains the allergenic ability of the natural allergen. J Proteomics 2018; 187:39-46. [DOI: 10.1016/j.jprot.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 01/24/2023]
|
9
|
Zielińska S, Jezierska-Domaradzka A, Wójciak-Kosior M, Sowa I, Junka A, Matkowski AM. Greater Celandine's Ups and Downs-21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today's Pharmacology. Front Pharmacol 2018; 9:299. [PMID: 29713277 PMCID: PMC5912214 DOI: 10.3389/fphar.2018.00299] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
As antique as Dioscorides era are the first records on using Chelidonium as a remedy to several sicknesses. Inspired by the "signatura rerum" principle and an apparent ancient folk tradition, various indications were given, such as anti-jaundice and cholagogue, pain-relieving, and quite often mentioned-ophthalmological problems. Central and Eastern European folk medicine has always been using this herb extensively. In this region, the plant is known under many unique vernacular names, especially in Slavonic languages, associated or not with old Greek relation to "chelidon"-the swallow. Typically for Papaveroidae subfamily, yellow-colored latex is produced in abundance and leaks intensely upon injury. Major pharmacologically relevant components, most of which were first isolated over a century ago, are isoquinoline alkaloids-berberine, chelerythrine, chelidonine, coptisine, sanguinarine. Modern pharmacology took interest in this herb but it has not ended up in gaining an officially approved and evidence-based herbal medicine status. On the contrary, the number of relevant studies and publications tended to drop. Recently, some controversial reports and sometimes insufficiently proven studies appeared, suggesting anticancer properties. Anticancer potential was in line with anecdotical knowledge spread in East European countries, however, in the absence of directly-acting cytostatic compounds, some other mechanisms might be involved. Other properties that could boost the interest in this herb are antimicrobial and antiviral activities. Being a common synanthropic weed or ruderal plant, C. majus spreads in all temperate Eurasia and acclimates well to North America. Little is known about the natural variation of bioactive metabolites, including several aforementioned isoquinoline alkaloids. In this review, we put together older and recent literature data on phytochemistry, pharmacology, and clinical studies on C. majus aiming at a critical evaluation of state-of-the-art from the viewpoint of historical and folk indications. The controversies around this herb, the safety and drug quality issues and a prospective role in phytotherapy are discussed as well.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
| | - Anna Jezierska-Domaradzka
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wrocław Medical University, Wrocław, Poland
| | | | - Ireneusz Sowa
- Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Adam Junka
- Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Wrocław, Poland
| | - Adam M. Matkowski
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|