1
|
Cakmak U, Tuncay FO, Kolcuoğlu Y. Cold active α-amylase obtained from Cladophora hutchinsiae-Purification, biochemical characterization and some potential applications. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Egbune EO, Avwioroko OJ, Anigboro AA, Aganbi E, Amata AI, Tonukari NJ. Characterization of a surfactant-stable α-amylase produced by solid-state fermentation of cassava (Manihot esculenta Crantz) tubers using Rhizopus oligosporus: Kinetics, thermal inactivation thermodynamics and potential application in laundry industries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Yu F, Li Y, Wang H, Peng T, Wu YR, Hu Z. Microbial debromination of hexabromocyclododecanes. Appl Microbiol Biotechnol 2021; 105:4535-4550. [PMID: 34076715 DOI: 10.1007/s00253-021-11095-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 11/29/2022]
Abstract
Hexabromocyclododecanes (HBCDs), a new sort of brominated flame retardants (BFRs), are globally prevalent and recalcitrant toxic environmental pollutants. HBCDs have been found in many environmental media and even in the human body, leading to serious health concerns. HBCDs are biodegradable in the environment. By now, dozens of bacteria have been discovered with the ability to transform HBCDs. Microbial debromination of HBCDs is via HBr-elimination, HBr-dihaloelimination, and hydrolytic debromination. Biotic transformation of HBCDs yields many hydroxylated and lower brominated compounds which lack assessment of ecological toxicity. Bioremediation of HBCD pollution has only been applied in the laboratory. Here, we review the current knowledge about microbial debromination of HBCDs, aiming to promote the bioremediation applied in HBCD contaminated sites. KEY POINTS: • Microbial debromination of HBCDs is via hydrolytic debromination, HBr-elimination, and HBr-dihaloelimination. • Newly occurred halogenated contaminants such as HBCDs hitch the degradation pathway tamed by previously discharged anthropogenic organohalides. • Strategy that combines bioaugmentation with phytoremediation for bioremediation of HBCD pollution is promising.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Yuyang Li
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Hui Wang
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Tao Peng
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Yi-Rui Wu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Zhong Hu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
A Novel Digestive α-Amylase from Blue Crab ( Portunus segnis) Viscera: Purification, Biochemical Characterization and Application for the Improvement of Antioxidant Potential of Oat Flour. Int J Mol Sci 2021; 22:ijms22031070. [PMID: 33499004 PMCID: PMC7865747 DOI: 10.3390/ijms22031070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
This study reports on the purification and characterization of a digestive α-amylase from blue crab (Portunussegnis) viscera designated Blue Crab Amylase (BCA). The enzyme was purified to homogeneity by ultrafiltration, Sephadex G-100 gel filtration and Sepharose mono Q anion exchange chromatography, with the final purification fold of 424.02, specific activity of 1390.8 U mg−1 and 27.8% recovery. BCA, showing a molecular weight of approximately 45 kDa, possesses desirable biotechnological features, such as optimal temperature of 50 °C, interesting thermal stability which is enhanced in the presence of starch, high stability towards surfactants (Tween 20, Tween 80 and Triton X-100), high specific activity, quite high storage and broad pH range stability. The enzyme displayed Km and Vmax values, of 7.5 ± 0.25 mg mL−1 and 2000 ± 23 μmol min−1 mg−1 for potato starch, respectively. It hydrolyzed various carbohydrates and produced maltose, maltotriose and maltotetraose as the major end products of starch hydrolysis. In addition, the purified enzyme was successfully utilized for the improvement of the antioxidant potential of oat flour, which could be extended to other cereals. Interestingly, besides its suitability for application in different industrial sectors, especially food industries, the biochemical properties of BCA from the blue crab viscera provide novel features with other marine-derived enzymes and better understanding of the biodegradability of carbohydrates in marine environments, particularly in invasive alien crustaceans.
Collapse
|
5
|
Das SR, Basak N. Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective. Bioprocess Biosyst Eng 2020; 44:1-25. [PMID: 32785789 DOI: 10.1007/s00449-020-02422-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023]
Abstract
Changing lifestyle is increasing the energy demand. Fossil fuel is unable to deliver such huge energy. Clean energy from renewable source can solve this problem. Hydrogen is a clean and energy-efficient fuel and used for electricity generation by fuel cells or can be used in combustion engine. Easy availability of starch wastes from different industrial food processing wastes makes it a potential source for hydrogen (H2) generation. Among various processes such as steam reforming, electrolysis, biophotolysis of water and anaerobic fermentation, anaerobic fermentation technique is environmentally friendly and requires less external energy, making it a preferred process for H2 generation. Dark fermentation process can use wide range of substrates including agricultural and industrial starchy waste with low level of undesirable compounds. Application of both anaerobic dark and photofermentation can improve H2 yield and production rate. H2 production from wastes containing starch serves dual benefit of waste reduction and energy generation. As starch is a polymer and all hydrogen-producing bacteria cannot produce amylase to hydrolyze it, a pretreatment step is required to convert starch into glucose and maltose. In this present review paper, we have summarized: (i) potential of various types of starch-containing wastes as feedstock, (ii) various fermentation techniques, (iii) optimization of external process parameter, (iv) application of bioreactor and simulation in fermentation technique and (v) advancement in H2 production from starchy wastes.
Collapse
Affiliation(s)
- Satya Ranjan Das
- Department of Biotechnology, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India
| | - Nitai Basak
- Department of Biotechnology, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
6
|
Hong Y, Chen C, Wu Y. Biobutanol production from sulfuric acid‐pretreated red algal biomass by a newly isolated
Clostridium
sp. strain WK. Biotechnol Appl Biochem 2019; 67:738-743. [DOI: 10.1002/bab.1820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ying Hong
- Department of Biology Shantou University Shantou Guangdong People's Republic of China
| | - Chaoyang Chen
- Department of Biology Shantou University Shantou Guangdong People's Republic of China
| | - Yi‐Rui Wu
- Department of Biology Shantou University Shantou Guangdong People's Republic of China
- Guangdong Provincial Key Laboratory of Marine Biotechnology Shantou University Shantou Guangdong People's Republic of China
| |
Collapse
|
7
|
Birolli WG, Lima RN, Porto ALM. Applications of Marine-Derived Microorganisms and Their Enzymes in Biocatalysis and Biotransformation, the Underexplored Potentials. Front Microbiol 2019; 10:1453. [PMID: 31481935 PMCID: PMC6710449 DOI: 10.3389/fmicb.2019.01453] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Biodiversity has been explored in the search for novel enzymes, including forests, savannas, tundras, deserts, and finally the sea. Marine microorganisms and their enzymes are capable of being active in high-salt concentration, large range of temperature, and high incidence of light and pressure, constituting an important source of unique biocatalysts. This review presents studies employing whole-cell processes of marine bacteria and fungi, aiming for new catalysts for different reactions in organic synthesis, such as reduction, oxidation, hydroxylation, hydrolysis, elimination, and conjugation. Genomics and protein engineering studies were also approached, and reactions employing isolated enzymes from different classes (oxidoreductases, hydrolases, lyases, and ligases) were described and summarized. Future biotechnological studies and process development should focus on molecular biology for the obtention of enzymes with interesting, fascinating and enhanced properties, starting from the exploration of microorganisms from the marine environment. This review approaches the literature about the use of marine-derived bacteria, fungi, and their enzymes for biocatalytic reactions of organic compounds, promoting a discussion about the possibilities of these microorganisms in the synthesis of different substances.
Collapse
Affiliation(s)
- Willian G Birolli
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.,Center of Exact Sciences and Technology, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Rafaely N Lima
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.,Center of Exact Sciences and Technology, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - André L M Porto
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
8
|
Wang Y, Pan Y, Li X, Zhang K, Zhu T. Ultrasonic treatment enhances sludge disintegration and degradation in a photosynthetic bacteria-bioelectrochemical system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:665-671. [PMID: 30884011 DOI: 10.1002/wer.1095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Excess sludge contains a large amount of organic matter, most of which is present in the form of bacteria and extracellular polymeric substances. In this study, a photosynthetic bioelectrochemical system (BES) combined with ultrasonic treatment (UT) was investigated to mineralize sludge. The sludge was disintegrated by the UT, and the supernatant separated from the treated sludge was further degraded through a bioelectrochemical system containing photosynthetic bacteria (PSB-BES). The UT efficiency was enhanced by supernatant separation. The PSB-BES method effectively improved the degradation of the soluble chemical oxygen demand (SCOD) from the supernatant. The SCOD and protein removal were increased 1.4 and 1.5 times, respectively, compared to BES without PSB. In addition, the effects of several key operating factors including illumination, voltage, and temperature were systematically investigated. This study provides a basis for further development of sludge mineralization processes. PRACTITIONER POINTS: The sludge was disintegrated by the ultrasound treatment. The supernatant separated from treated sludge was further degraded by a bioelectrochemical system combined with photosynthetic bacteria. The ultrasonic treatment efficiency was enhanced by supernatant separation. The PSB-BES method effectively improved the soluble chemical oxygen demand (SCOD) degradation from the supernatant. The effects of several key operating factors including light (dark-photo), voltage, and temperature were systematically investigated.
Collapse
Affiliation(s)
- Youzhao Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Yuan Pan
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Xianjin Li
- Jiangsu Environmental Protection Equipment Co., Ltd, Changshu, China
| | - Kuo Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
9
|
Shanmugam S, Sun C, Chen Z, Wu YR. Enhanced bioconversion of hemicellulosic biomass by microbial consortium for biobutanol production with bioaugmentation strategy. BIORESOURCE TECHNOLOGY 2019; 279:149-155. [PMID: 30716607 DOI: 10.1016/j.biortech.2019.01.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
As a renewable and sustainable source for next-generation biofuel production, lignocellulosic biomass can be effectively utilized in environmentally friendly manner. In this study, a stable, xylan-utilizing, anaerobic microbial consortium MC1 enriched from mangrove sediments was established, and it was taxonomically identified that the genera Ruminococcus and Clostridium from this community played a crucial role in the substrate utilization. In addition, a butanol-producing Clostridium sp. strain WST was introduced via the bioaugmentation process, which resulted in the conversion of xylan to biobutanol up to 10.8 g/L, significantly improving the butanol yield up to 0.54 g/g by 98-fold. When this system was further applied to other xylan-rich biomass, 1.09 g/L of butanol could be achieved from 20 g/L of corn cob. These results provide another new method to efficiently convert xylan, the main hemicellulose from lignocellulosic biomass into biofuels through a low-cost and eco-friendly manner.
Collapse
Affiliation(s)
| | - Chongran Sun
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Zichuang Chen
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; STU-UNIVPM Joint Algal Research Center, Shantou University, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
10
|
Exploring Marine Environments for the Identification of Extremophiles and Their Enzymes for Sustainable and Green Bioprocesses. SUSTAINABILITY 2018. [DOI: 10.3390/su11010149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sea environments harbor a wide variety of life forms that have adapted to live in hard and sometimes extreme conditions. Among the marine living organisms, extremophiles represent a group of microorganisms that attract increasing interest in relation to their ability to produce an array of molecules that enable them to thrive in almost every marine environment. Extremophiles can be found in virtually every extreme environment on Earth, since they can tolerate very harsh environmental conditions in terms of temperature, pH, pressure, radiation, etc. Marine extremophiles are the focus of growing interest in relation to their ability to produce biotechnologically useful enzymes, the so-called extremozymes. Thanks to their resistance to temperature, pH, salt, and pollutants, marine extremozymes are promising biocatalysts for new and sustainable industrial processes, thus representing an opportunity for several biotechnological applications. Since the marine microbioma, i.e., the complex of microorganisms living in sea environments, is still largely unexplored finding new species is a central issue for green biotechnology. Here we described the main marine environments where extremophiles can be found, some existing or potential biotechnological applications of marine extremozymes for biofuels production and bioremediation, and some possible approaches for the search of new biotechnologically useful species from marine environments.
Collapse
|
11
|
Shanmugam S, Sun C, Zeng X, Wu YR. High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. BIORESOURCE TECHNOLOGY 2018; 256:543-547. [PMID: 29486913 DOI: 10.1016/j.biortech.2018.02.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 05/24/2023]
Abstract
A novel Clostridium sp. strain WST isolated from mangrove sediments demonstrated its unique characteristics of producing high titer of biobutanol from low concentration of substrates via anaerobic fermentation. The strain is able to convert glucose and galactose to high amount of biobutanol up to 16.62 and 12.11 g/L, respectively, and the yields of 0.54 and 0.55 g/g were determined to be much higher than those from the previous reports on Clostridial batch fermentation. Moreover, the inherent strong regulatory system of strain WST also prompts itself to perform the fermentation process without any requirement of pH control. In addition to tolerance of high butanol concentration and negligible production of by-products (e.g., ethanol or acids), this strain has immense potential for the sustainable industry-scale production of biobutanol.
Collapse
Affiliation(s)
| | - Chongran Sun
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xiaoming Zeng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; STU-UNIVPM Joint Algal Research Center, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
12
|
Trincone A. Update on Marine Carbohydrate Hydrolyzing Enzymes: Biotechnological Applications. Molecules 2018; 23:E901. [PMID: 29652849 PMCID: PMC6017418 DOI: 10.3390/molecules23040901] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
After generating much interest in the past as an aid in solving structural problems for complex molecules such as polysaccharides, carbohydrate-hydrolyzing enzymes of marine origin still appear as interesting biocatalysts for a range of useful applications in strong interdisciplinary fields such as green chemistry and similar domains. The multifaceted fields in which these enzymes are of interest and the scarce number of original articles in literature prompted us to provide the specialized analysis here reported. General considerations from modern (2016-2017 interval time) review articles are at start of this manuscript; then it is subsequently organized in sections according to particular biopolymers and original research articles are discussed. Literature sources like the Science Direct database with an optimized W/in search, and the Espacenet patent database were used.
Collapse
Affiliation(s)
- Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| |
Collapse
|
13
|
Sun C, Zhang S, Xin F, Shanmugam S, Wu YR. Genomic comparison of Clostridium species with the potential of utilizing red algal biomass for biobutanol production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:42. [PMID: 29467820 PMCID: PMC5815214 DOI: 10.1186/s13068-018-1044-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sustainable biofuels, which are widely considered as an attractive alternative to fossil fuels, can be generated by utilizing various biomass from the environment. Marine biomass, such as red algal biomass, is regarded as one potential renewable substrate source for biofuels conversion due to its abundance of fermentable sugars (e.g., galactose). Previous studies focused on the enhancement of biofuels production from different Clostridium species; however, there has been limited investigation into their metabolic pathways, especially on the conversion of biofuels from galactose, via whole genomic comparison and evolutionary analysis. RESULTS Two galactose-utilizing Clostridial strains were examined and identified as Clostridium acetobutylicum strain WA and C. beijerinckii strain WB. Via the genomic sequencing of both strains, the comparison of the whole genome together with the relevant protein prediction of 33 other Clostridium species was established to reveal a clear genome profile based upon various genomic features. Among them, five representative strains, including C. beijerinckii NCIMB14988, C. diolis DSM 15410, C. pasteurianum BC1, strain WA and WB, were further discussed to demonstrate the main differences among their respective metabolic pathways, especially in their carbohydrate metabolism. The metabolic pathways involved in the generation of biofuels and other potential products (e.g., riboflavin) were also reconstructed based on the utilization of marine biomass. Finally, a batch fermentation process was performed to verify the fermentative products from strains WA and WB using 60 g/L of galactose, which is the main hydrolysate from algal biomass. It was observed that strain WA and WB could produce up to 16.98 and 12.47 g/L of biobutanol, together with 21,560 and 10,140 mL/L biohydrogen, respectively. CONCLUSIONS The determination of the production of various biofuels by both strains WA and WB and their genomic comparisons with other typical Clostridium species on the analysis of various metabolic pathways was presented. Through the identification of their metabolic pathways, which are involved in the conversion of galactose into various potential products, such as biobutanol, the obtained results extend the current insight into the potential capability of utilizing marine red algal biomass and provide a systematic investigation into the relationship between this genus and the generation of sustainable bioenergy.
Collapse
Affiliation(s)
- Chongran Sun
- Department of Biology, Shantou University, Shantou, 515063 Guangdong China
| | - Shuangfei Zhang
- Department of Biology, Shantou University, Shantou, 515063 Guangdong China
| | - Fengxue Xin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063 Guangdong China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | | | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, 515063 Guangdong China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063 Guangdong China
- STU-UNIVPM Joint Algal Research Center, Shantou University, Shantou, 515063 Guangdong China
| |
Collapse
|