1
|
Jieying S, Tingting L, Caie W, Dandan Z, Gongjian F, Xiaojing L. Paper-based material with hydrophobic and antimicrobial properties: Advanced packaging materials for food applications. Compr Rev Food Sci Food Saf 2024; 23:e13373. [PMID: 38778547 DOI: 10.1111/1541-4337.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The environmental challenges posed by plastic pollution have prompted the exploration of eco-friendly alternatives to disposable plastic packaging and utensils. Paper-based materials, derived from renewable resources such as wood pulp, non-wood pulp (bamboo pulp, straw pulp, reed pulp, etc.), and recycled paper fibers, are distinguished by their recyclability and biodegradability, making them promising substitutes in the field of plastic food packaging. Despite their merits, challenges like porosity, hydrophilicity, limited barrier properties, and a lack of functionality have restricted their packaging potential. To address these constraints, researchers have introduced antimicrobial agents, hydrophobic substances, and other functional components to improve both physical and functional properties. This enhancement has resulted in notable improvements in food preservation outcomes in real-world scenarios. This paper offers a comprehensive review of recent progress in hydrophobic antimicrobial paper-based materials. In addition to outlining the characteristics and functions of commonly used antimicrobial substances in food packaging, it consolidates the current research landscape and preparation techniques for hydrophobic paper. Furthermore, the paper explores the practical applications of hydrophobic antimicrobial paper-based materials in agricultural produce, meat, and seafood, as well as ready-to-eat food packaging. Finally, challenges in production, application, and recycling processes are outlined to ensure safety and efficacy, and prospects for the future development of antimicrobial hydrophobic paper-based materials are discussed. Overall, the emergence of hydrophobic antimicrobial paper-based materials stands out as a robust alternative to plastic food packaging, offering a compelling solution with superior food preservation capabilities. In the future, paper-based materials with antimicrobial and hydrophobic functionalities are expected to further enhance food safety as promising packaging materials.
Collapse
Affiliation(s)
- Shi Jieying
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Tingting
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Wu Caie
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhou Dandan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fan Gongjian
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Li Xiaojing
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Song Q, Gao B, Zhang S, Hu C. Adopting the "Missile boats-Aircraft carrier" strategy via human-contact friendly oxidized starch to achieve rapid-sustainably antibacterial paperboards. Int J Biol Macromol 2024; 259:129066. [PMID: 38158062 DOI: 10.1016/j.ijbiomac.2023.129066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Polysaccharide-based antibacterial agents have received tremendous attention for the facile fabrication, low toxicity, and high compatibility with carbohydrate polymers. However, the antimicrobial mechanism, activity, and cytotoxicity for human-contact paperboards of oxidized starch (OST) with high carboxyl content, has not been explored. Herein, OST-27- 75 with 27- 75 wt% carboxyl contents were fabricated by H2O2 and coated on paperboards. Strikingly, OST-55 coating layer (16 g/m2) did not exfoliate from paperboard and possessed the rapid-sustainable antibacterial performance against Staphylococcus aureus and Escherichia coli. The soluble and insoluble components of OST-55 (OST55-S: OST55-IS mass ratio = 1: 2.1) presented different antimicrobial features and herein they were characterized by GC-MS, FT-IR, H-NMR, XRD, bacteriostatic activities, biofilm formation inhibition and intracellular constituent leakage to survey the antibacterial mechanism. The results revealed OST55-S displayed an amorphous structure and possessed superior antibacterial activity against S. aureus (MIC = 4 mg/mL) and E. coli (MIC = 8 mg/mL). Distinctively, OST55-S could rapidly ionize [H+] like "missile boats" from small molecule saccharides, while OST55-IS polyelectrolyte could continuously and slowly release for [H+] like an "aircraft carrier" to inhibit biofilm formation and disrupt cell structure. Eventually, the "Missile boats-Aircraft carrier" strategy provided a green methodology to fabricate polymeric antibacterial agents and expanded the use of cellulose-based materials.
Collapse
Affiliation(s)
- Qiaowei Song
- Packaging Engineering Institute, Jinan University, Qianshan Road 206, Zhuhai, Guangdong 519070, China
| | - Bingbing Gao
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Changying Hu
- Packaging Engineering Institute, Jinan University, Qianshan Road 206, Zhuhai, Guangdong 519070, China; Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China..
| |
Collapse
|
3
|
Mehranfar A, Khavani M, Mofrad MRK. Adsorption Process of Various Antimicrobial Peptides on Different Surfaces of Cellulose. ACS APPLIED BIO MATERIALS 2023; 6:1041-1053. [PMID: 36935640 DOI: 10.1021/acsabm.2c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Current antimicrobial challenges in hospitals, pharmaceutical production units, and food packaging have motivated the development of antimicrobial agents, among them the antimicrobial compounds based on cellulose and peptides. Herein, we develop molecular dynamics (MD) models to dissect and characterize the adsorption process of antimicrobial peptides (AMPs) such as protegrin 1, magainin 2, and cyclic indolicidin on various surfaces of cellulose including [-1-10], [1-10], [-100], [100], [-110], and [110]. Our results suggest that the magainin 2 antimicrobial peptide loses most of its initial helix form, spreads on the cellulose surface, and makes the most rigid structure with [110] surface. The cyclic indolicidin peptide has the lowest affinity to adsorb on the cellulose surfaces, and the protegrin 1 peptide successfully adsorbs on all the proposed cellulose surfaces. Our MD simulations confirmed that cellulose can improve the corresponding peptides' structural stability and change their secondary structures during adsorption. The [-1-10] and [100] surfaces of cellulose show considerable affinity against the AMPs, exhibiting greater interactions with and adsorption to the peptides. Our data imply that the stronger adsorptions are caused by a set of H-bonds, van der Waals, and electrostatic interactions, where van der Waals interactions play a prominent role in the stability of the AMP-cellulose structures. Our energy analysis results suggest that glutamic acid and arginine amino acids have key roles in the stability of AMPs on cellulose surfaces due largely to stronger interactions with the cellulose surfaces as compared with other residues. Our results can provide useful insight at the molecular level that can help design better antimicrobial biomaterials based on cellulose.
Collapse
Affiliation(s)
- Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Barbosa M, Simões H, Pinto SN, Macedo AS, Fonte P, Prazeres DMF. Fusions of a Carbohydrate Binding Module with the Small Cationic Hexapeptide RWRWRW Confer Antimicrobial Properties to Cellulose-based Materials. Acta Biomater 2022; 143:216-232. [PMID: 35257951 DOI: 10.1016/j.actbio.2022.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
The emergence of antibiotic-resistant bacteria is a critical worldwide healthcare problem. In the specific case of wound care, new and effective alternatives to currently available solutions are urgently needed. Cellulose-based dressings, for example, could be made more attractive if rendered antimicrobial. This work proposes a new strategy to modify cellulose-based materials with the short antimicrobial hexapeptide MP196 (RWRWRW-NH2) that relies on a biomolecular recognition approach based on carbohydrate binding modules (CBMs). Specifically, we focused on the modification of hydrogels, paper, and microfibrillated cellulose (MFC) with fusions of the CBM3 from Clostridium thermocellum (C. thermocellum) with derivatives of MP196. The fusions are prepared by promoting the formation of a disulfide bond between Cys-terminated derivatives of MP196 and a CBM3 that is pre-anchored in the materials. The CBM3-MP196-modified materials displayed antibacterial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) that was significantly higher when compared with the activity of materials prepared by physical adsorption of MP196. The biomolecular strategy provides a more favorable orientation, exposure, and distancing of the peptide from the matrix. This versatile concept provides a toolbox for the functionalization of cellulose materials of different origins and architectures with a broad choice in peptides. Functionalization under mild biological conditions avoids further purification steps, allowing for translational research and multiple applications as drug delivery systems, scaffolds for tissue engineering and biomaterials. STATEMENT OF SIGNIFICANCE: The emergence of antibiotic-resistant bacteria is a critical worldwide healthcare problem. In the specific case of wound care, new and effective alternatives to currently available solutions are urgently needed. This work proposes a new strategy to modify cellulose-based materials with a short antimicrobial hexapeptide that relies on a biomolecular recognition approach based on carbohydrate binding modules. The modified materials displayed antibacterial activity against both Gram-negative and Gram-positive bacteria. The biomolecular strategy provides a favorable orientation, exposure, and distancing of the peptide from the matrix. This versatile concept offers a toolbox for the functionalization of different cellulose materials with a broad choice in peptides. Functionalization under mild biological conditions avoids further purification steps, allowing for translational research and multiple applications.
Collapse
Affiliation(s)
- Mariana Barbosa
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Hélvio Simões
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Pedro Fonte
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center of Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - D Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Huang C, Cai Y, Chen X, Ke Y. Silver-based nanocomposite for fabricating high performance value-added cotton. CELLULOSE (LONDON, ENGLAND) 2021; 29:723-750. [PMID: 34848932 PMCID: PMC8612115 DOI: 10.1007/s10570-021-04257-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Cotton is one of the most important cellulose fibers, but the absence of antimicrobial capacity along with the self-cleaning, UV protection and electric conductivity often frustrates its wider applications in many fields. Nanotechnology has provided new insights into the development of functional nanomaterials with unique chemical and physical properties. Silver has been effectively incorporated into the cotton fabrics as the antimicrobial agents due to the strong inhibitory and antimicrobial effects on a broad spectrum of bacteria, fungi and virus with low toxicity to human being. In this review, a variety of strategies have been summarized to load silver on cotton fabrics in situ or ex situ and to fabricate high performance value-added cotton fabrics with self-cleaning, UV protection, electric conductivity and antimicrobial capability depending on the synthesis of silver coating or silver-based nanocomposite coating.
Collapse
Affiliation(s)
- Chongjun Huang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| | - Yurou Cai
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| | - Xi Chen
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| | - Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| |
Collapse
|
6
|
Rodríguez-Sánchez IJ, Fuenmayor CA, Clavijo-Grimaldo D, Zuluaga-Domínguez CM. Electrospinning of ultra-thin membranes with incorporation of antimicrobial agents for applications in active packaging: a review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Dianney Clavijo-Grimaldo
- Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Carlos Mario Zuluaga-Domínguez
- Departamento de Desarrollo Rural y Agroalimentario, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| |
Collapse
|
7
|
Sperandeo P, Bosco F, Clerici F, Polissi A, Gelmi ML, Romanelli A. Covalent Grafting of Antimicrobial Peptides onto Microcrystalline Cellulose. ACS APPLIED BIO MATERIALS 2020; 3:4895-4901. [DOI: 10.1021/acsabm.0c00412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Fabrizio Bosco
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| | - Francesca Clerici
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| |
Collapse
|
8
|
Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosens Bioelectron 2019; 141:111407. [DOI: 10.1016/j.bios.2019.111407] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022]
|
9
|
Wang Y, Zhang L, Liu W, Cui C, Hou Q. Fabrication of optically transparent and strong nanopaper from cellulose nanofibril based on corncob residues. Carbohydr Polym 2019; 214:159-166. [DOI: 10.1016/j.carbpol.2019.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 11/28/2022]
|