1
|
Narsimulu B, Qureshi R, Jakkula P, Singh P, Arifuddin M, Qureshi IA. Exploration of seryl tRNA synthetase to identify potent inhibitors against leishmanial parasites. Int J Biol Macromol 2023; 237:124118. [PMID: 36963547 DOI: 10.1016/j.ijbiomac.2023.124118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Aminoacyl-tRNA synthetases are crucial enzymes for cellular protein metabolism and have been considered as an attractive target for development of new antimicrobials. In the current study, seryl tRNA synthetase of Leishmania donovani (LdSerRS) and its mutants were purified and characterized through biochemical and structural methods. Purified LdSerRS was found to be enzymatically active and exhibited more alpha helices in secondary structure. The enzymatic activity of purified protein was observed as highest near physiological temperature and pH. Mutation in ATP binding residues (R295 and E297) demonstrated reduction in the affinity for cofactor with no significant deviation in secondary structure. In vitro inhibition studies with ureidosulfocoumarin derivatives helped to identify Comp 5l as a specific inhibitor for leishmanial SerRS that showed lesser potency towards purified HsSerRS. The identified compound presented competitive mode of inhibition for LdSerRS and also revealed druglikeness along with very low toxicity for human macrophages. Structural analysis of protein and ligand complex depicted the binding of Comp 5l into the cofactor binding site of LdSerRS with high affinity succeeded by validation employing molecular dynamics simulations. Altogether, our study presents a promising scaffold to explore small molecules to target the enzymatic activity of leishmanial SerRS to develop the specific therapeutics.
Collapse
Affiliation(s)
- Bandigi Narsimulu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
2
|
Feroz A, Khaki PSS, Bano B. Urea induced unfolding of rai seed cystatin: Influence of glycerol as a chemical chaperone. Colloids Surf B Biointerfaces 2023; 225:113233. [PMID: 36931044 DOI: 10.1016/j.colsurfb.2023.113233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Cystatin superfamily members, by virtue of their thiol protease regulatory properties, show involvement in myriad physiological processes important for survival and well-being. The current study involves urea-induced denaturation of a novel variant of the cystatin superfamily, rai seed cystatin (RSC), employing a variety of biophysical assays in order to characterize different folding intermediates generated on unfolding. Urea as a denaturant presented the passage of RSC through a series of events resulting in the loss of RSC functional capability, accompanied by changes in the archetype at secondary and tertiary structural levels, as evident from protease inhibitory, UV absorption, and intrinsic fluorescence assays, respectively. ANS fluorescence also revealed routing of RSC through discrete multiple sub-states thus presenting the generation of intermediate states somewhat close to the pre-molten globule and/or molten globule forms of RSC. Furthermore, far-UV circular dichroism analysis revealed a concentration-dependent gradual loss in typical -helical RSC peaks, indicating a nearly 50 % loss in secondary structural elements around 5 M urea treatment. The study also reports the possible role of glycerol in the refolding and/or reactivation of the urea unfolded RSC form. Glycerol presented itself as a potent structural stabilizer as it assisted in the refolding and reactivation of the unfolded RSC in a dosage-dependent manner, concomitantly paving the way for unravelling the mechanistic approach involved in the phenomenon, which can facilitate future studies.
Collapse
Affiliation(s)
- Anna Feroz
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, UP, India; Department of Biosciences, Integral University, Lucknow, UP, India
| | | | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, UP, India.
| |
Collapse
|
3
|
Gel properties and interactions of scallop (Patinopecten yessoensis) male gonad hydrolysates and nonionic polysaccharide mixtures. Food Chem 2022; 394:133482. [DOI: 10.1016/j.foodchem.2022.133482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/22/2022]
|
4
|
Effects of SDS on the activity and conformation of protein tyrosine phosphatase from thermus thermophilus HB27. Sci Rep 2020; 10:3195. [PMID: 32081966 PMCID: PMC7035334 DOI: 10.1038/s41598-020-60263-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/03/2020] [Indexed: 11/20/2022] Open
Abstract
Deciphering the activity-conformation relationship of PTPase is of great interest to understand how PTPase activity is determined by its conformation. Here we studied the activity and conformational transitions of PTPase from thermus thermophilus HB27 in the presence of sodium dodecyl sulfate (SDS). Activity assays showed the inactivation of PTPase induced by SDS was in a concentration-dependent manner. Fluorescence and circular dichroism spectra suggested SDS induced significant conformational transitions of PTPase, which resulted in the inactivation of PTPase, and the changes of α-helical structure and tertiary structure of PTPase. Structural analysis revealed a number of hydrophobic and charged residues around the active sites of PTPase may be involved in the hydrophobic and ionic bonds interactions of PTPase and SDS, which are suggested to be the major driving force to result in PTPase inactivation and conformational transitions induced by SDS. Our results suggested the hydrophobic and charged residues around the active sites were essential for the activity and conformation of PTPase. Our study promotes a better understanding of the activity and conformation of PTPase.
Collapse
|
5
|
Li C, Yang J, Yao L, Qin F, Hou G, Chen B, Jin L, Deng J, Shen Y. Characterisation, physicochemical and functional properties of protein isolates from Amygdalus pedunculata Pall seeds. Food Chem 2019; 311:125888. [PMID: 31771911 DOI: 10.1016/j.foodchem.2019.125888] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022]
Abstract
Amygdalus pedunculata Pall is a kind of desert woody oil plant, and its seeds are high in protein. The protein of Amygdalus pedunculata Pall (API) was identified by SDS-PAGE, 2-DE and MS. More than 300 proteins were identified. The improved solubility, emulsifying properties and foaming properties of API were observed in a pH range of 2.0-12.0 and a sodium chloride concentration of 0-1.0 M. The results showed that API had a good solubility (94.2%), bulk density (0.107 g/mL), oil absorption capacity (3.54 g/g), thermal stability (91.58 °C), emulsifying property (70 m2/g) and foaming property (83.7%). The conformation changes of API were studied by fluorescence and differential scanning calorimetry (DSC). The degree of denaturation of denaturants for API was guanidine hydrochloride > urea > SDS. These results showed that API has good processing performance and can be used as a new type of plant protein resource.
Collapse
Affiliation(s)
- Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Juzhuan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Lu Yao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Fangling Qin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China; College of Chemistry and Chemical Engineering, Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
| | - Guofeng Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Jianjun Deng
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
6
|
Siddiqui S, Siddiqui MF, Khan S, Bano B. Insight into the biochemical characterization of phytocystatin from Glycine max and its interaction with Cd +2 and Ni +2. J Mol Recognit 2019; 32:e2787. [PMID: 31180171 DOI: 10.1002/jmr.2787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
Phytocystatins are cysteine proteinase inhibitors ubiquitously present in plants and animals. They are known to carry out various significant physiological functions and also maintain the balance of protease-antiprotease activity. In the present disquisition, a phytocystatin after preliminary treatment has been isolated and purified to homogeneity from soybean (Glycine max) by a simple two-step stratagem using ammonium sulfate fractionation and gel filtration chromatography performed on Sephacryl S-100-HR. Soybean phytocystatin (SBPC) was purified with a fold purification of 635 and percent yield of 77.6%. A single band was observed on native gel electrophoresis confirming the homogeneity of the purified SBPC. The molecular weight of SBPC was found to be 19.05 kDa as determined by SDS-PAGE. The SBPC was found to be devoid of carbohydrate moieties and sulfhydryl group content. The binding stoichiometry of SBPC-papain interaction was determined by isothermal calorimetry suggesting 1:1 complex, and the value of binding constant (K) was found to be 2.78 × 105 M-1 The affinity of binding (Kd ) value obtained through ITC was 3.59 × 10-6 M. The purified SBPC was found to be stable in the pH range of 3 to 7 and is thermostable up to 50°C. The UV-visible and fluorescence studies showed significant changes in the conformation upon the formation of the SBPC-papain complex. Furthermore, fluorescence spectroscopy, ANS binding, and caseinolytic activity assay were conducted out to explore the effect of metal ions on SBPC which showed that there was a loss in the inhibitory activity along with conformational changes of SBPC upon complex formation with Cd+2 and Ni+2 .
Collapse
Affiliation(s)
- Sharmin Siddiqui
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Faizan Siddiqui
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shumaila Khan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Bilqees Bano
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
7
|
Probing the binding effects of zinc and cadmium with garlic phytocystatin: Implication of the abiotic stress on garlic phytocystatin. Int J Biol Macromol 2019; 133:945-956. [DOI: 10.1016/j.ijbiomac.2019.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/10/2019] [Accepted: 04/05/2019] [Indexed: 11/24/2022]
|
8
|
Agrawal SB, Ghosh D, Gaikwad SM. Investigation of structural and saccharide binding transitions of Bauhinia purpurea and Wisteria floribunda lectins. Arch Biochem Biophys 2019; 662:134-142. [DOI: 10.1016/j.abb.2018.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 11/28/2022]
|
9
|
Siddiqui MF, Khan MS, Husain FM, Bano B. Deciphering the binding of carbendazim (fungicide) with human serum albumin: A multi-spectroscopic and molecular modelling studies. J Biomol Struct Dyn 2018; 37:2230-2241. [DOI: 10.1080/07391102.2018.1481768] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mohd Faizan Siddiqui
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi ArabiaCommunicated by Ramaswamy H. Sarma
| | - Bilqees Bano
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
10
|
Isolated domains of recombinant human apo-metallothionein 1A are folded at neutral pH: a denaturant and heat-induced unfolding study using ESI-MS. Biosci Rep 2018; 38:BSR20180592. [PMID: 29858425 PMCID: PMC6050192 DOI: 10.1042/bsr20180592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/25/2022] Open
Abstract
Metallothioneins (MTs) are characterized by their high metal loading capacity, small molecular weight, and abundant cysteine residues. It has long been thought that metal-free, or apo-MT peptides were unstructured and only adopted as a distinct conformation upon forming the metal clusters, described as metal-induced folding. More recent studies have suggested that the presence of a globular, yet loosely defined structure actually exists that can be disrupted or unfolded. Residue modification and ion-mobility ESI (IM-ESI)-MS have been used to examine this unusual unfolding process. The structure of apo-MT plays a critical role as the starting point in the flexible metalation pathways that can accommodate numerous soft metals. ESI-MS measurements of the product species formed following the cysteine alkylation of the isolated domain fragments of recombinant human apo-MT 1A with n-ethylmaleimide (NEM) were used in the present study to monitor the denaturant- and heat-induced unfolding at physiological pH. The results indicate that these apo-MT fragments adopt distinct structures at neutral pH that react co-operatively with NEM when folded and non-cooperatively when heated or exposed to high concentrations of the denaturant guanidinium chloride (GdmCl). From these studies, we can conclude that at neutral pH, the domain fragments are folded into globular structures where some of the free cysteine residues are buried within the core and are stabilized by hydrogen bonds. Metalation therefore, must take place from the folded conformation.
Collapse
|
11
|
Bansal R, Haque MA, Yadav P, Gupta D, Ethayathulla AS, Hassan MI, Kaur P. Estimation of structure and stability of MurE ligase from Salmonella enterica serovar Typhi. Int J Biol Macromol 2018; 109:375-382. [DOI: 10.1016/j.ijbiomac.2017.12.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/29/2022]
|