1
|
Basith S, Manavalan B, Lee G. Amyotrophic lateral sclerosis disease-related mutations disrupt the dimerization of superoxide dismutase 1 - A comparative molecular dynamics simulation study. Comput Biol Med 2022; 151:106319. [PMID: 36446187 DOI: 10.1016/j.compbiomed.2022.106319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
More than 150 genes are involved in amyotrophic lateral sclerosis (ALS), with superoxide dismutase 1 (SOD1) being one of the most studied. Mutations in SOD1 gene, which encodes the enzyme SOD1 is the second most prevalent and studied cause of familial ALS. SOD1 is a ubiquitous, homodimeric metalloenzyme that forms a critical component of the cellular defense against reactive oxygen species. Several mutations in the SOD1 enzyme cause misfolding, dimerization instability, and increased aggregate formation in ALS. However, there is a lack of information on the dimerization of SOD1 monomers and the mechanistic underpinnings on how the pathogenic mutations disrupt the dimerization mechanism. Here, we presented microsecond-scale molecular dynamics (MD) simulations to unravel how interface-based mutations compromise SOD1 dimerization and provide mechanistic understanding into the corresponding process using WT and three interface-based mutant systems (A4V, T54R, and I113T). Structural stability analysis showed that the mutant systems displayed disparate variations in the catalytic sites which may directly alter the stability and activity of the SOD1 enzyme. Based on the dynamic network analysis and principal component analysis, it has been identified that the mutations weakened the correlated motions along the dimer interface and altered the protein conformational behavior, thus weakening the stability of dimer formation. Moreover, the simulation results identified crucial residues such as G51, D52, G114, I151, and Q153 in establishing the dimerization interaction network, which were weakened or absent in the presence of interfacial mutants. Surface potential analysis on mutant systems also displayed changes in the dimerization potential, thus showing the unfavorable dimer formation. Furthermore, network analysis identified the hotspot residues necessary for SOD1 signal transduction which were surprisingly found in the catalytic sites rather than the anticipated dimerization interface.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
2
|
Rahman A, Saikia B, Gogoi CR, Baruah A. Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:31-48. [PMID: 36044970 DOI: 10.1016/j.pbiomolbio.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Aberrant protein folding known as protein misfolding is counted as one of the striking factors of neurodegenerative diseases. The extensive range of pathologies caused by protein misfolding, aggregation and subsequent accumulation are mainly classified into either gain of function diseases or loss of function diseases. In order to seek for novel strategies for treatment and diagnosis of neurodegenerative diseases, insights into the mechanism of misfolding and aggregation is essential. A comprehensive knowledge on the factors influencing misfolding and aggregation is required as well. An extensive experimental study on protein aggregation is somewhat challenging due to the insoluble and noncrystalline nature of amyloid fibrils. Thus there has been a growing use of computational approaches including Monte Carlo simulation, docking simulation, molecular dynamics simulation in the study of protein misfolding and aggregation. The review presents a discussion on molecular dynamics simulation alone as to how it has emerged as a promising tool in the understanding of protein misfolding and aggregation in general, detailing upon three different aspects considering four misfold prone proteins in particular. It is noticeable that all four proteins considered in this review i.e prion, superoxide dismutase1, huntingtin and amyloid β are linked to chronic neurodegenerative diseases with debilitating effects. Initially the review elaborates on the factors influencing the misfolding and aggregation. Next, it addresses our current understanding of the amyloid structures and the associated aggregation mechanisms, finally, summarizing the contribution of this computational tool in the search for therapeutic strategies against the respective protein-deposition diseases.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Chimi Rekha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
3
|
Computer analysis of the relation between hydrogen bond stability in SOD1 mutants and the survival time of amyotrophic lateral sclerosis patients. J Mol Graph Model 2021; 110:108026. [PMID: 34653813 DOI: 10.1016/j.jmgm.2021.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Mutations in the SOD1 protein can lead to the death of motor neurons, which, in turn, causes an incurable disease called amyotrophic lateral sclerosis (ALS). At the same time, the mechanism of the onset and development of this disease is not fully understood and is often contradictory. METHODS Accelerated Molecular Dynamics as implemented in the OpenMM library, principal component analysis, regression analysis, random forest method. RESULTS The stability of hydrogen bonds in 72 mutants of the SOD1 protein was calculated. Principal component analysis was carried out. Based on ten principal components acting as predictors, a multiple linear regression model was constructed. An analysis of the correlation of these ten principal components with the initial values of the stability of hydrogen bonds made it possible to characterize the contribution of known structurally and functionally important sites in the SOD1 to the scatter of ALS patients' survival time. CONCLUSION Such an analysis made it possible to put forward hypotheses about the relationship between the stabilizing and destabilizing effects of mutations in different structurally and functionally important regions of SOD1 with the patients's survival time.
Collapse
|
4
|
Chen J, Wang J, Pang L, Wang W, Zhao J, Zhu W. Deciphering molecular mechanism behind conformational change of the São Paolo metallo-β-lactamase 1 by using enhanced sampling. J Biomol Struct Dyn 2019; 39:140-151. [DOI: 10.1080/07391102.2019.1707121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Elkarhat Z, Elkhattabi L, Charoute H, Morjane I, Errouagui A, Carey F, Nasser B, Barakat A, Rouba H. Identification of deleterious missense variants of human Piwi like RNA-mediated gene silencing 1 gene and their impact on PAZ domain structure, stability, flexibility and dimension: in silico analysis. J Biomol Struct Dyn 2019; 38:4600-4606. [DOI: 10.1080/07391102.2019.1678522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zouhair Elkarhat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
- Faculty of Science and Technology, Laboratory of Neuroscience and Biochemistry, Settat, Morocco
| | - Lamiaa Elkhattabi
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Imane Morjane
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Abdellatif Errouagui
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Francis Carey
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Boubker Nasser
- Faculty of Science and Technology, Laboratory of Neuroscience and Biochemistry, Settat, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
6
|
Computational Investigation on Electrostatic Loop Mutants Instigating Destabilization and Aggregation on Human SOD1 Protein Causing Amyotrophic Lateral Sclerosis. Protein J 2019; 38:37-49. [PMID: 30701485 DOI: 10.1007/s10930-018-09809-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in the gene encoding Cu/Zn Superoxide Dismutase 1 (SOD1) protein are contemplated to be a protruding reason for Amyotrophic lateral sclerosis (ALS), which leads towards protein aggregation, misfolding and destabilization. Thus, we investigated the systematic action of entire mutations reported on electrostatic loop of SOD1 protein through thermodynamical and discrete molecular dynamics (DMD) studies. Accordingly, we analyzed the outcomes distinctly for screening the mutant structures having both, deleterious and destabilizing effect. Progressively, the impacts of those mutations on SOD1 were studied using DMD program. Surprisingly, our results predicted that the mutants viz., L126S, N139H and G141A to be the most destabilizing, misfolded and disease-causing compared to other mutants. Besides, the outcomes from secondary structural propensities and free energy landscapes, together assertively suggested that L126S, N139H and G141A tend to increase the formation of aggregates in SOD1 relative to other mutants. Hence, this study could provide an insight into the sprouting neurodegenerative disorder distressing the humans.
Collapse
|
7
|
Srinivasan E, Rajasekaran R. Quantum chemical and molecular mechanics studies on the assessment of interactions between resveratrol and mutant SOD1 (G93A) protein. J Comput Aided Mol Des 2018; 32:1347-1361. [PMID: 30368622 DOI: 10.1007/s10822-018-0175-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has been associated with mutations in metalloenzyme superoxide dismutase (SOD1) causing protein structural destabilization and aggregation. However, the mechanistic action and the cure for the disease still remain obscure. Herein, we initially studied the conformational preferences of SOD1 protein structures upon substitution of Ala at Gly93 in comparison with that of wild type. Our results corroborated with the previous experimental studies on the aggregation and the destabilizing activity of mutant SOD1 protein G93A. On the therapeutic point of view, we computationally analyzed the influence of resveratrol, a natural polyphenol widely found in red wine on mutant SOD1 relative to wild type, using molecular docking studies. Further, FMO calculations were performed, using GAMESS to study the pair residual interaction on the wild type and mutant complex systems. Consequently, the resveratrol showed greater interaction with mutant than the wild type. Subsequently, we evaluated the conformational preferences of wild type and mutant complex systems, where the protein conformational structures of mutant that were earlier found to lose their conformational stability was regained, upon binding with resveratrol. Similar trend of results were found on the 2-D free energy landscapes of both the wild type and mutant systems. Hence, the combined biophysical and quantum chemical studies in our study supported the results of previous experimental studies, thereby stipulating an action of resveratrol on mutant SOD1 and paving a way for the design of highly potent effective inhibitors against fALS affecting the mankind.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to be University), Vellore, Tamil Nadu, 632014, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to be University), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|