1
|
Du X, Wang L, Liang H, Chen G, Wu J, Xia W, Gao D. Removal of benzo[a]pyrene from the soil by adsorption coupled with degradation on saponin-modified bentonite immobilized crude enzymes. ENVIRONMENTAL RESEARCH 2024; 261:119716. [PMID: 39096990 DOI: 10.1016/j.envres.2024.119716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Bentonite is a non-metallic mineral with montmorillonite as the main component. It is an environmentally friendly mineral material with large reserves, wide distribution, and low price. Bentonite can be easily modified organically using the surfactant saponin to obtain saponin-modified bentonite (Sap-BT). This study investigates the immobilization of crude enzymes obtained from Trametes versicolor by physical adsorption with Sap-BT. Thus, saponin-modified bentonite immobilized crude enzymes (CE-Sap-BT) were developed to remove benzo[a]pyrene. Immobilization improves the stability of free enzymes. CE-Sap-BT can maintain more than 80% of activity at 45 °C and after storage for 15 d. Additionally, CE-Sap-BT exhibited a high removal rate of benzo[a]pyrene in soil, with 65.69% after 7 d in highly contaminated allotment soil and 52.90% after 6 d in actual soil contaminated with a low concentration of benzo[a]pyrene at a very low laccase dosage (0.1 U/3 g soil). The high catalytic and removal performance of CE-Sap-BT in contaminated sites showed more excellent practical application value.
Collapse
Affiliation(s)
- Xuran Du
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; The College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Guanyu Chen
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jing Wu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
2
|
Costa IO, Morais JRF, de Medeiros Dantas JM, Gonçalves LRB, Dos Santos ES, Rios NS. Enzyme immobilization technology as a tool to innovate in the production of biofuels: A special review of the Cross-Linked Enzyme Aggregates (CLEAs) strategy. Enzyme Microb Technol 2023; 170:110300. [PMID: 37523882 DOI: 10.1016/j.enzmictec.2023.110300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
This review emphasizes the crucial role of enzyme immobilization technology in advancing the production of two main biofuels, ethanol and biodiesel, with a specific focus on the Cross-linked Enzyme Aggregates (CLEAs) strategy. This method of immobilization has gained attention due to its simplicity and affordability, as it does not initially require a solid support. CLEAs synthesis protocol includes two steps: enzyme precipitation and cross-linking of aggregates using bifunctional agents. We conducted a thorough search for papers detailing the synthesis of CLEAs utilizing amylases, cellulases, and hemicellulases. These key enzymes are involved in breaking down starch or lignocellulosic materials to produce ethanol, both in first and second-generation processes. CLEAs of lipases were included as these enzymes play a crucial role in the enzymatic process of biodiesel production. However, when dealing with large or diverse substrates such as lignocellulosic materials for ethanol production and oils/fats for biodiesel production, the use of individual enzymes may not be the most efficient method. Instead, a system that utilizes a blend of enzymes may prove to be more effective. To innovate in the production of biofuels (ethanol and biodiesel), enzyme co-immobilization using different enzyme species to produce Combi-CLEAs is a promising trend.
Collapse
Affiliation(s)
- Isabela Oliveira Costa
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | - Nathália Saraiva Rios
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
3
|
Liu Z, Smith SR. Cross-Linked Enzyme Aggregate (CLEA) Preparation from Waste Activated Sludge. Microorganisms 2023; 11:1902. [PMID: 37630462 PMCID: PMC10458447 DOI: 10.3390/microorganisms11081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Enzymes are used extensively as industrial bio-catalysts in various manufacturing and processing sectors. However, commercial enzymes are expensive in part due to the high cost of the nutrient medium for the biomass culture. Activated sludge (AS) is a waste product of biological wastewater treatment and consists of microbial biomass that degrades organic matter by producing substantial quantities of hydrolytic enzymes. Recovering enzymes from AS therefore offers a potential alternative to conventional production techniques. A carrier-free, cross-linked enzyme aggregate (CLEA) was produced from crude AS enzyme extract for the first time. A major advantage of the CLEA is the combined immobilization, purification, and stabilization of the crude enzymes into a single step, thereby avoiding large amounts of inert carriers in the final enzyme product. The AS CLEA contained a variety of hydrolytic enzymes and demonstrated high potential for the bio-conversion of complex organic substrates.
Collapse
Affiliation(s)
| | - Stephen R. Smith
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
4
|
Wang L, Li Y, Du X, Wu J, Zhang Z, Jin H, Liang H, Gao D. Performance enhancement of white rot fungi extracellular enzymes via new hydrogel microenvironments for remediation of benzo[a]pyrene contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131505. [PMID: 37121037 DOI: 10.1016/j.jhazmat.2023.131505] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Organic pollutants with low solubility and high ecotoxicity, mutagenicity, and carcinogenicity, are rapidly entering and accumulating in soil, resulting in soil pollution. Several methods have been investigated for remediation of organic contaminated soil, including enzymatic remediation approach. However, free enzymes are easily deactivated, which hinders their practical application in soil remediation. Immobilization of enzyme improves its stability and catalytic performance, but the immobilized material itself becomes secondary pollutants in soil. In this study, Trametes versicolor extracellular enzyme was immobilized on the degradable calcium alginate hydrogel microspheres. The laccase maintained a high activity. In addition, the addition of cellulose improved the strength of the carrier. Hydrogel microspheres solved the problems of easy inactivation of free enzyme and secondary contamination of immobilized materials. By a novel combination of extracellular enzymes and hydrogel microenvironments, immobilized enzymes not only demonstrate outstanding performance in thermal stability and pH adaptability, but also achieves a significant improvement in biocatalytic activity for benzo[a]pyrene contaminated soil. The thermal stability of immobilized enzyme was much higher than that of free enzyme. When the temperature increased to 50 °C, the activity of immobilized enzyme remained at 93.15% of the maximum enzyme activity, while the activity of free enzyme decreased to 63.76%. At pH 8, the immobilized enzyme activity maintained 74.84% of the maximum enzyme activity, while the free enzyme activity was only 11.86%. Immobilized enzymes can effectively remove 91.40% of benzo[a]pyrene from soil within 96 h. Furthermore, the catalytic oxidation of benzo[a]pyrene by enzymes that have been immobilized ultimately results in the production of 6,12-benzo[a]pyrene-dione. Molecular dynamics simulation showed that the catalytic degradation of benzo[a]pyrene was mainly through the interaction of amino acid residues PRO-391 with the Pi-alkyl of benzo[a]pyrene. This study presents an innovative strategy for designing and developing immobilized enzymes for use in biocatalytic applications related to eco-remediation of soil.
Collapse
Affiliation(s)
- Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xuran Du
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jing Wu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zhou Zhang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Huixia Jin
- School of Civil Engineering &Architecture, Ningbotech University, Zhejiang University, Ningbo 315100, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
5
|
Yip YS, Manas NHA, Jaafar NR, Rahman RA, Puspaningsih NNT, Illias RM. Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase and maltogenic amylase from Bacillus lehensis G1 for maltooligosaccharides synthesis. Int J Biol Macromol 2023; 242:124675. [PMID: 37127056 DOI: 10.1016/j.ijbiomac.2023.124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Maltooligosaccharides (MOS) are functional oligosaccharides that can be synthesized through enzymatic cascade reaction between cyclodextrin glucanotransferase (CGTase) and maltogenic amylase (Mag1) from Bacillus lehensis G1. To address the problems of low operational stability and non-reusability of free enzymes, both enzymes were co-immobilized as combined cross-linked enzyme aggregates (Combi-CLEAs-CM) with incorporation of bovine serum albumin (BSA) and Tween 80 (Combi-CLEAs-CM-add). Combi-CLEAs-CM and Combi-CLEAs-CM-add showed activity recoveries of 54.12 % and 69.44 %, respectively after optimization. Combi-CLEAs-CM-add showed higher thermal stability at higher temperatures (40 °C) with longer half-life (46.20 min) as compared to those of free enzymes (36.67 min) and Combi-CLEAs-CM (41.51 min). Both combi-CLEAs also exhibited higher pH stability over pH 5 to pH 9, and displayed excellent reusability with >50 % of initial activity retained after four cycles. The reduction in Km value of about 22.80 % and 1.76-fold increase in starch hydrolysis in comparison to Combi-CLEAs-CM attested the improvement of enzyme-substrate interaction by Tween 80 and pores formation by BSA in Combi-CLEAs-CM-add. The improved product specificity of Combi-CLEAs-CM-add also produced the highest yield of MOS (492 mg/g) after 3 h. Therefore, Combi-CLEAs-CM-add with ease of preparation, excellent reusability and high operational stability is believed to be highly efficacious biocatalyst for MOS production.
Collapse
Affiliation(s)
- Yee Seng Yip
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ni Nyoman Tri Puspaningsih
- Laboratory of Proteomics, University-CoE Research Center for Bio-Molecule Engineering, Universitas Airlangga, Kampus C-UNAIR, Surabaya, East Java, Indonesia
| | - Rosli Md Illias
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
6
|
Qian J, Huang A, Zhu H, Ding J, Zhang W, Chen Y. Immobilization of lipase on silica nanoparticles by adsorption followed by glutaraldehyde cross-linking. Bioprocess Biosyst Eng 2023; 46:25-38. [PMID: 36370210 DOI: 10.1007/s00449-022-02810-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
In this study, Candida antarctica lipase B was immobilized on silica (SiO2) nanoparticles by physical adsorption, and then cross-linked with glutaraldehyde (GA) to prepare cross-linked immobilized lipase (CLIL). During the condition of 1.28 mg/mL lipase concentration, 25 ℃ temperature, 2 h adsorption time, 0.01% GA (V/V) 7.5 mL and 2 h cross-linking time, the highest recovery activity of CLIL reached 87.82 ± 0.07% (22.55 ± 0.025 U/mg). Scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) confirmed that lipase was immobilized on the surface of SiO2 nanoparticles. The changes in secondary structures of CLIL indicated that cross-linking changed the secondary structure of lipase protein, which made the structure of CLIL more stable. Compared with the free lipase, the thermal stability and storage stability of CLIL was significantly improved, and the t1/2 at 60 °C was extended. Studies had shown that it was a feasible method to obtain CLIL by cross-linking after adsorbing lipase on SiO2 nanoparticles.
Collapse
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China.
| | - Aomei Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Hanxiao Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Jing Ding
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Yan Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
7
|
Cross-linked enzyme aggregates (CLEAs) of cellulase with improved catalytic activity, adaptability and reusability. Bioprocess Biosyst Eng 2022; 45:865-875. [DOI: 10.1007/s00449-022-02704-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/03/2022] [Indexed: 01/03/2023]
|
8
|
Nemiwal M, Zhang TC, Kumar D. Enzyme Immobilized Nanomaterials as Electrochemical Biosensors for Detection of Biomolecules. Enzyme Microb Technol 2022; 156:110006. [DOI: 10.1016/j.enzmictec.2022.110006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/09/2023]
|
9
|
Abdulhamid MB, Hero JS, Zamora M, Gómez MI, Navarro MC, Romero CM. Effect of the biological functionalization of nanoparticles on magnetic CLEA preparation. Int J Biol Macromol 2021; 191:689-698. [PMID: 34547314 DOI: 10.1016/j.ijbiomac.2021.09.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Lipase immobilization using adsorption on magnetic nanoparticles, cross-linked enzyme aggregates (CLEA), and a combination of both techniques was investigated. Experimental designs were used for the optimization of the immobilization observing that the pH and ionic strength play a principal role during the lipase immobilization and its activity. For adsorption on magnetic nanoparticles and CLEA synthesis the optimal condition was pH and 100 mM. Besides, during the CLEA synthesis, glutaraldehyde concentration showed to be a significant effect on the enzyme activity. A comparison between a magnetic CLEA prepared with (Lip@mCLEA) and without (mCLEA) biological functionalized magnetic nanoparticles was made observing that the use of functionalized support showed the best performance activity. All biocatalytic systems developed gives to the enzyme thermal stability between 45 and 70 °C, being Lip@mCLEA the more stable biocatalyst. Similar behavior was observed at different pH, where both Lip@mCLEA and mCLEA showed stability at a range of pH 5 to 8. The immobilized biocatalysts showed the same affinity of the subtract that the free enzyme suggested that the enzyme structure not modified the active site. The combination of both types of immobilization show evidenced the importance of the biological functionalization of the support when magnetic CLEA is produced.
Collapse
Affiliation(s)
- María Belén Abdulhamid
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina
| | - Johan Sebatian Hero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina
| | - Mariana Zamora
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina
| | - María Inés Gómez
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina
| | - María Carolina Navarro
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina.
| | - Cintia Mariana Romero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina.
| |
Collapse
|
10
|
Jiaojiao X, Yan Y, Bin Z, Feng L. Improved catalytic performance of carrier-free immobilized lipase by advanced cross-linked enzyme aggregates technology. Bioprocess Biosyst Eng 2021; 45:147-158. [PMID: 34611752 DOI: 10.1007/s00449-021-02648-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023]
Abstract
The cross-linked enzyme aggregates (CLEAs) are one of the technologies that quickly immobilize the enzyme without a carrier. In this study, ionic liquid with amino group (1-aminopropyl-3-methylimidazole bromide, FIL) was used as the novel functional surface molecule to modify CRL (Candida rugosa lipase, CRL). The enzymatic properties of CRL-FIL-CLEAs were investigated. The activity of CRL-FIL-CLEAs (5.51 U/mg protein) was 1.9 times higher than that of CRL-CLEAs (2.86 U/mg protein) without surface modification. After incubating in a centrifuge tube for 50 min at 60 °C, CRL-FIL-CLEAs still maintained 61% of its initial activity, while the value for CRL-CLEAs was only 22%. After repeated use for five times, compared with the 22% residual activity of CRL-CLEAs, the value of CRL-FIL-CLEAs was 51%. Based on the above results, it was indicated that this method provided a new idea for the effective synthesis of immobilized enzyme.
Collapse
Affiliation(s)
- Xia Jiaojiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yan Yan
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zou Bin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Liu Feng
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China
| |
Collapse
|
11
|
Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products. Appl Microbiol Biotechnol 2021; 105:6759-6778. [PMID: 34458936 DOI: 10.1007/s00253-021-11495-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/29/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-β-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points• Cohnella sp. AR92 genome encoded five potential endo-xylanases.• Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.• GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.• GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.
Collapse
|
12
|
Romero G, Contreras LM, Aguirre C, Wilkesman J, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras-Vázquez FJ. Characterization of Cross-Linked Enzyme Aggregates of the Y509E Mutant of a Glycoside Hydrolase Family 52 β-xylosidase from G. stearothermophilus. Molecules 2021; 26:molecules26020451. [PMID: 33467076 PMCID: PMC7830863 DOI: 10.3390/molecules26020451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
Cross-linked enzyme aggregates (CLEAs) of the Y509E mutant of glycoside hydrolase family 52 β-xylosidase from Geobacillus stearothermophilus with dual activity of β-xylosidase and xylanase (XynB2Y509E) were prepared. Ammonium sulfate was used as the precipitant agent, and glutaraldehyde as cross-linking agent. The optimum conditions were found to be 90% ammonium sulfate, 12.5 mM glutaraldehyde, 3 h of cross-linking reaction at 25 °C, and pH 8.5. Under these (most effective) conditions, XynB2Y509E-CLEAs retained 92.3% of their original β-xylosidase activity. Biochemical characterization of both crude and immobilized enzymes demonstrated that the maximum pH and temperature after immobilization remained unchanged (pH 6.5 and 65 °C). Moreover, an improvement in pH stability and thermostability was also found after immobilization. Analysis of kinetic parameters shows that the K
m value of XynB2Y509E-CLEAs obtained was slightly higher than that of free XynB2Y509E (1.2 versus 0.9 mM). Interestingly, the xylanase activity developed by the mutation was also conserved after the immobilization process.
Collapse
Affiliation(s)
- Gabriela Romero
- Center for Environmental, Biological and Chemical Research, Experimental Faculty of Sciences and Technology, University of Carabobo, Valencia 2001, Venezuela; (G.R.); (L.M.C.); (J.W.)
| | - Lellys M. Contreras
- Center for Environmental, Biological and Chemical Research, Experimental Faculty of Sciences and Technology, University of Carabobo, Valencia 2001, Venezuela; (G.R.); (L.M.C.); (J.W.)
- Department of Chemistry and Physics, University of Almeria, Building CITE I, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain; (J.M.C.-J.); (F.R.-V.)
| | - Carolina Aguirre
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Department of Environmental Chemistry, Faculty of Sciences, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción 4090541, Chile;
| | - Jeff Wilkesman
- Center for Environmental, Biological and Chemical Research, Experimental Faculty of Sciences and Technology, University of Carabobo, Valencia 2001, Venezuela; (G.R.); (L.M.C.); (J.W.)
- Institute for Biochemistry, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, D-68163 Mannheim, Germany
| | - Josefa María Clemente-Jiménez
- Department of Chemistry and Physics, University of Almeria, Building CITE I, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain; (J.M.C.-J.); (F.R.-V.)
- Campus de Excelencia Internacional Agroalimentario ceiA3, University of Almeria, 04120 Almería, Spain
| | - Felipe Rodríguez-Vico
- Department of Chemistry and Physics, University of Almeria, Building CITE I, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain; (J.M.C.-J.); (F.R.-V.)
- Campus de Excelencia Internacional Agroalimentario ceiA3, University of Almeria, 04120 Almería, Spain
| | - Francisco Javier Las Heras-Vázquez
- Department of Chemistry and Physics, University of Almeria, Building CITE I, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain; (J.M.C.-J.); (F.R.-V.)
- Campus de Excelencia Internacional Agroalimentario ceiA3, University of Almeria, 04120 Almería, Spain
- Correspondence: ; Tel.: +34-950-015055
| |
Collapse
|
13
|
Hero JS, Morales AH, Perotti NI, Romero CM, Martinez MA. Improved development in magnetic Xyl-CLEAs technology for biotransformation of agro-industrial by-products through the use of a novel macromolecular cross-linker. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Zerva A, Pentari C, Topakas E. Crosslinked Enzyme Aggregates (CLEAs) of Laccases from Pleurotus citrinopileatus Induced in Olive Oil Mill Wastewater (OOMW). Molecules 2020; 25:E2221. [PMID: 32397329 PMCID: PMC7248732 DOI: 10.3390/molecules25092221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
The enzymatic factory of ligninolytic fungi has proven to be a powerful tool in applications regarding the degradation of various types of pollutants. The degradative potential of fungi is mainly due to the production of different types of oxidases, of which laccases is one of the most prominent enzymatic activities. In the present work, crude laccases from the supernatant of Pleurotus citrinopileatus cultures grown in olive oil mill wastewater (OOMW) were immobilized in crosslinked enzyme aggregates (CLEAs), aiming at the development of biocatalysts suitable for the enzymatic treatment of OOMW. The preparation of laccase CLEAs was optimized, resulting in a maximum of 72% residual activity. The resulting CLEAs were shown to be more stable in the presence of solvents and at elevated temperatures compared to the soluble laccase preparation. The removal of the phenolic component of OOMW catalyzed by laccase-CLEAs exceeded 35%, while they were found to retain their activity for at least three cycles of repetitive use. The described CLEAs can be applied for the pretreatment of OOMW, prior to its use for valorization processes, and thus, facilitate its complete biodegradation towards a consolidated process in the context of circular economy.
Collapse
Affiliation(s)
- Anastasia Zerva
- InduBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (A.Z.); (C.P.)
| | - Christina Pentari
- InduBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (A.Z.); (C.P.)
| | - Evangelos Topakas
- InduBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (A.Z.); (C.P.)
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
15
|
Gupta MN, Perwez M, Sardar M. Protein crosslinking: Uses in chemistry, biology and biotechnology. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1733990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
16
|
Osorio-González CS, Chaali M, Hegde K, Brar SK, Kermanshahipour A, Avalos-Ramírez A. Production and Processing of the Enzymes from Lignocellulosic Biomass. VALORIZATION OF BIOMASS TO VALUE-ADDED COMMODITIES 2020. [DOI: 10.1007/978-3-030-38032-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Abdul Wahab MKH, El-Enshasy HA, Bakar FDA, Murad AMA, Jahim JM, Illias RM. Improvement of cross-linking and stability on cross-linked enzyme aggregate (CLEA)-xylanase by protein surface engineering. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Bilal M, Cui J, Iqbal HMN. Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis. Int J Biol Macromol 2019; 130:186-196. [PMID: 30817963 DOI: 10.1016/j.ijbiomac.2019.02.141] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023]
Abstract
Enzymes as green industrial biocatalysts have become a powerful norm that offers several advantages over traditional catalytic agents with regard to process efficiency, reusability, sustainability, and overall cost-effective ratio. However, enzymes obtained from natural origins are often engineered/tailored since their native forms do not fulfill the acute need for the industrial application. Revolutionary developments in protein engineering provide excellent opportunities for designing and constructing novel industrial biocatalysts with improved functional properties including catalytic activity, stability, substrate specificity, and reaction product inhibition. Momentum in enzyme immobilization has enabled robustness and optimal functions in extreme industrial environments, such as high temperature or organic solvents. The emergence of multi-enzyme catalytic cascade based on a combination of biocatalysts presents multifarious opportunities in biosynthesis, biocatalysis, and biotransformation. This review focuses on the emerging and state-of-the-art enzyme engineering trends and approaches to constructing innovative nano- and microstructured biocatalysts with enhanced catalytic activity and stability features requisite for industrial exploitation. Continuous key developments in this direction together with protein engineering in unique ways might offer ever-increasing opportunities for future biocatalysis-based industrial bioprocesses.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
19
|
Verma R, Kumar A, Kumar S. Synthesis and characterization of cross-linked enzyme aggregates (CLEAs) of thermostable xylanase from Geobacillus thermodenitrificans X1. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Techniques for Preparation of Cross-Linked Enzyme Aggregates and Their Applications in Bioconversions. Catalysts 2018. [DOI: 10.3390/catal8050174] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Enzymes are biocatalysts. They are useful in environmentally friendly production processes and have high potential for industrial applications. However, because of problems with operational stability, cost, and catalytic efficiency, many enzymatic processes have limited applications. The use of cross-linked enzyme aggregates (CLEAs) has been introduced as an effective carrier-free immobilization method. This immobilization method is attractive because it is simple and robust, and unpurified enzymes can be used. Coimmobilization of different enzymes can be achieved. CLEAs generally show high catalytic activities, good storage and operational stabilities, and good reusability. In this review, we summarize techniques for the preparation of CLEAs for use as biocatalysts. Some important applications of these techniques in chemical synthesis and environmental applications are also included. CLEAs provide feasible and efficient techniques for improving the properties of immobilized enzymes for use in industrial applications.
Collapse
|