1
|
Liu HM, Tang W, Lei SN, Zhang Y, Cheng MY, Liu QL, Wang W. Extraction Optimization, Characterization and Biological Activities of Polysaccharide Extracts from Nymphaea hybrid. Int J Mol Sci 2023; 24:ijms24108974. [PMID: 37240320 DOI: 10.3390/ijms24108974] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, polysaccharide-rich Nymphaea hybrid extracts (NHE) were obtained using the ultrasound-assisted cellulase extraction (UCE) method optimized by response surface methodology (RSM). The structural properties and thermal stability of NHE were characterized by Fourier-transform infrared (FT-IR), high-performance liquid chromatography (HPLC) and thermogravimetry-derivative thermogravimetry (TG-DTG) analysis, respectively. Moreover, the bioactivities of NHE, including the antioxidant, anti-inflammatory, whitening and scratch healing activities were evaluated by different in vitro assays. NHE conveyed a good ability to scavenge against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and inhibit the hyaluronidase activity. NHE can effectively protect the HaCaT cells against oxidative damage by inhibiting the intracellular reactive oxygen species (ROS) production in the H2O2 stimulation assays and promoting the proliferation and migration in the scratch assays. In addition, NHE was proven to inhibit melanin production in B16 cells. Collectively, the above results seem to be the evidence needed to promote the potential of NHE to be regarded as a new functional raw material in the cosmetics or food industries.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Sheng-Nan Lei
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qing-Lei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| |
Collapse
|
2
|
Hasheminya SM, Dehghannya J. Development and characterization of novel edible films based on Cordia dichotoma gum incorporated with Salvia mirzayanii essential oil nanoemulsion. Carbohydr Polym 2021; 257:117606. [DOI: 10.1016/j.carbpol.2020.117606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022]
|
3
|
Kassem IAA, Joshua Ashaolu T, Kamel R, Elkasabgy NA, Afifi SM, Farag MA. Mucilage as a functional food hydrocolloid: ongoing and potential applications in prebiotics and nutraceuticals. Food Funct 2021; 12:4738-4748. [PMID: 34100507 DOI: 10.1039/d1fo00438g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucilage is a soluble dietary fiber used as a food additive to give foods a firmer texture, aside from its many health benefits and pharmacological properties. It is a polysaccharide in nature, composed of large molecules of sugars and uronic acid moieties. The extraction of mucilage is achieved from a wide variety of plant parts, including rhizomes, roots, and seeds, and it has also been reported from microorganisms. In this review, the nutritional and medicinal applications of mucilage are described in the context of the different mucilage types. The current article highlights state-of-the-art valorization practices relating to mucilage and its potential novel usages in the food industry and nutraceuticals, and as a prebiotic, in addition to its nutritional and anti-nutritional values. Analysis of the prebiotic action of mucilage with respect to its structure activity relationship, as well as how it modulates gut bacteria, is presented for the first time and in the context of its known health benefits inside the colon. It is recommended that more investigations are carried out to maximize the health benefits of mucilage and ensure its safety, especially upon long-term usage.
Collapse
Affiliation(s)
- Iman A A Kassem
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam and Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Giza 12622, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Sherif M Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt. and Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
4
|
Arabinoxylan and rhamnogalacturonan mucilage: Outgoing and potential trends of pharmaceutical, environmental, and medicinal merits. Int J Biol Macromol 2020; 165:2550-2564. [PMID: 33115647 DOI: 10.1016/j.ijbiomac.2020.10.175] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Demand for safe, environmentally friendly and minimally processed food additives with intrinsic technological (stabilizing, texturizing, structuring) and functional potential is already on the rise. There are actually several natural excipients eligible for pharmaceutical formulation. Mucilage, as a class constitutes arabinoxylan and rhamnogalacturonan-based biomolecules used in the pharmaceutical, environmental as well as phytoremediation industries owing to its particular structure and properties. These compounds are widely used in pharmaceutical, food and cosmetics, as well as, in agriculture, paper industries. This review emphasizes mucilage valuable applications in the pharmaceutical and industrial fields. In this context, much focus has recently been given to the valorization of mucilage as an ingredient for food or nutraceutical applications. Furthermore, different optimization and extraction techniques are presented to develop better utilization and/or enhanced yield of mucilage. The highlighted mucilage extraction methods warrant assessing up-scale processes to encourage for its industrial applications. The current article capitalizes on cutting-edge characteristics of mucilage and posing for other possible innovative applications in non-food industries. Here, the first holistic overview of mucilage with regards to its physicochemical properties and potential novel usages is presented.
Collapse
|
5
|
Development and characterization of biocomposite films made from kefiran, carboxymethyl cellulose and Satureja Khuzestanica essential oil. Food Chem 2019; 289:443-452. [DOI: 10.1016/j.foodchem.2019.03.076] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 11/21/2022]
|