1
|
Recoverable cellulose composite adsorbents for anionic/cationic dyes removal. Int J Biol Macromol 2023; 238:124022. [PMID: 36921822 DOI: 10.1016/j.ijbiomac.2023.124022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
GO/HEC/PGDE/Fe3O4 materials were successfully fabricated using environmentally-friendly hydroxyethyl cellulose (HEC), poly(ethylene glycol) diglycidyl ether (PGDE), graphene oxide (GO) and magnetic Fe3O4. Systematic investigations were completed to explore the influences of GO content in GO/HEC/PGDE/Fe3O4 and adsorption conditions on the adsorptions of cationic dyes (methylene blue (MB), crystal violet (CV)) and anionic dye acid blue 25 (AB-25). The increase of GO content can remarkably improve the adsorption capacity of GO/HEC/PGDE/Fe3O4 for the dyes. The three kinetic, four isothermic and three thermodynamic models were investigated to reveal the adsorption behaviors of the dyes. The formation of HEC/PGDE/Fe3O4 and adsorption mechanisms of the dyes by GO/HEC/PGDE/Fe3O4 were suggested. The GO/HEC/PGDE/Fe3O4 endowed with easy-fabrication, eco-friendly feature, efficient adsorption capacity of anionic/cationic dyes, convenient separation and reusability has potential applications in wastewater purification industry.
Collapse
|
2
|
MAHMUDIONO T, BOKOV D, WIDJAJA G, KONSTANTINOV IS, SETIYAWAN K, ABDELBASSET WK, MAJDI HS, KADHIM MM, KAREEM HA, BANSAL K. Removal of heavy metals using food industry waste as a cheap adsorbent. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Dmitry BOKOV
- Sechenov First Moscow State Medical University, Russian Federation; Federal Research Center of Nutrition, Biotechnology and Food Safety, Russian Federation
| | - Gunawan WIDJAJA
- Universitas Indonesia, Indonesia; Universitas Krisnadwipayana, Indonesia
| | | | | | - Walid Kamal ABDELBASSET
- Prince Sattam bin Abdulaziz University, Saudi Arabia; Kasr Al-Aini Hospital, Cairo University, Egypt
| | | | | | | | | |
Collapse
|
3
|
Synthesis of super-absorbent poly(AN)-g-starch composite hydrogel and its modelling for aqueous sorption of cadmium ions. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0856-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116731. [PMID: 33607352 DOI: 10.1016/j.envpol.2021.116731] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world's energy need by producing least amount of toxic gases (reduction up to 20-70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, (A.P.), India
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580027, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
5
|
Xiao Y, Zhang M, Dong D, Gong P, Ye Y, Peng S, Deng M, Fan M, Cao Y, Wang K. Effect of temperature on the interaction of cellulose/1-allyl-3-methyl imidazolium chloride solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Physicochemical analysis of multilayer adsorption mechanism of anionic dyes on lignocellulosic biomasses via statistical physics and density functional theory. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114511] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Abstract
Porous materials constitute an attractive research field due to their high specific surfaces; high chemical stabilities; abundant pores; special electrical, optical, thermal, and mechanical properties; and their often higher reactivities. These materials are currently generating a great deal of enthusiasm, and they have been used in large and diverse applications, such as those relating to sensors and biosensors, catalysis and biocatalysis, separation and purification techniques, acoustic and electrical insulation, transport gas or charged species, drug delivery, and electrochemistry. Porous carbons are an important class of porous materials that have grown rapidly in recent years. They have the advantages of a tunable pore structure, good physical and chemical stability, a variable specific surface, and the possibility of easy functionalization. This gives them new properties and allows them to improve their performance for a given application. This review paper intends to understand how porous carbons involve the removal of pollutants from water, e.g., heavy metal ions, dyes, and organic or inorganic molecules. First, a general overview description of the different precursors and the manufacturing methods of porous carbons is illustrated. The second part is devoted to reporting some applications such using porous carbon materials as an adsorbent. It appears that the use of porous materials at different scales for these applications is very promising for wastewater treatment industries.
Collapse
|
8
|
A lignocellulose-based neutral hydrogel electrolyte for high-voltage supercapacitors with overlong cyclic stability. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Agafonov A, Shibaeva V, Kraev A, Guseinov S, Ramenskaya L, Kudryakova N, Grishina E. Effect of synthesis conditions on the properties of an ionic liquid in the 1-butyl-3-methylimidazolium acetate - Na-bentonite ionogel. Steric stabilization and confinement. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
|
11
|
Cargnin MA, de Souza AG, de Lima GF, Gasparin BC, Rosa DDS, Paulino AT. Pinus residue/pectin-based composite hydrogels for the immobilization of β-D-galactosidase. Int J Biol Macromol 2020; 149:773-782. [DOI: 10.1016/j.ijbiomac.2020.01.280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
|
12
|
Ufodike CO, Eze VO, Ahmed MF, Oluwalowo A, Park JG, Liang Z, Wang H. Investigation of molecular and supramolecular assemblies of cellulose and lignin of lignocellulosic materials by spectroscopy and thermal analysis. Int J Biol Macromol 2020; 146:916-921. [DOI: 10.1016/j.ijbiomac.2019.09.214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
|
13
|
Ufodike CO, Eze VO, Ahmed MF, Oluwalowo A, Park JG, Okoli OI, Wang H. Evaluation of the inter-particle interference of cellulose and lignin in lignocellulosic materials. Int J Biol Macromol 2020; 147:762-767. [PMID: 31982518 DOI: 10.1016/j.ijbiomac.2020.01.234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 01/15/2023]
Abstract
The inter-particle interference of lignocellulosic materials describes the order of the macromolecules at a larger size scale, which can give information about the pore structure, and interface of cellulose and lignin. The pore structure and interface influence the rate of enzymatic hydrolysis and thermal decomposition in cellulosic ethanol manufacturing. In this study, the inter-particle interference of cellulose and lignin of three major categories of lignocellulosic materials: wood-based (cedar and oak), energy crop (bamboo), and agricultural or forestry waste (palm) were evaluated. Scanning electron microscopy (SEM) reveals morphological irregularities in the case of bamboo and palm, which may form nucleation sites for faster accessibility to enzyme molecules. Small-angle X-ray scattering (SAXS) shows increased power-law exponent for palm, suggesting a less clustered structure, which was consistent with the rough surface morphology as detected by the SEM. Differential Scanning Calorimetry (DSC) showed a higher temperature maximum for cedar and oak, which is indicative of higher intermolecular forces within their organic compounds, and could result in slower disintegration of the macromolecules during biochemical processing. This study will help to estimate the activity of the macromolecules and absorption capacity of lignocellulosic materials during biochemical processing.
Collapse
Affiliation(s)
- Chukwuzubelu Okenwa Ufodike
- Florida Agricultural and Mechanical University, 1601 S Martin Luther King Jr Blvd, Tallahassee, FL 32307, USA; High-Performance Materials Institute, Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, USA.
| | - Vincent Obiozo Eze
- High-Performance Materials Institute, Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, USA
| | - Mohammad Faisal Ahmed
- Institute of Engineering, Collins Industry and Technology Center, Murray State University, Murray, KY 42071, USA
| | - Abiodun Oluwalowo
- Florida Agricultural and Mechanical University, 1601 S Martin Luther King Jr Blvd, Tallahassee, FL 32307, USA; High-Performance Materials Institute, Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, USA
| | - Jin Gyu Park
- High-Performance Materials Institute, Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, USA
| | - Okenwa I Okoli
- High-Performance Materials Institute, Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, USA
| | - Hui Wang
- High-Performance Materials Institute, Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, USA
| |
Collapse
|
14
|
Jiang B, Li Y, Wang H, Jia L, Huang F, Hu X. Application of a new type of Si–Al porous clay material as a solid phase support for immobilizing Acidovorax sp. PM3 to treat domestic sewage. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617419887819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel Si–Al porous clay material W (reprocessed from ceramic waste) was used for Acidovorax sp. strain PM3 immobilization to promote the growth of strains and improve nitrogen and phosphorus removal performance in water treatment systems. The porous clay material W was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy indicating that porous clay material W was a type of mullite with 63.52 m2/g specific surface area. After immobilization, the maximum biomass increased 2.7 times the specific growth rate and the removal rates of chemical oxygen demand (COD), ammonia (NH4+–N), and total phosphorus (TP) by the immobilized PM3 were 42.99, 29.19, and 11.76% higher than the free strain after 24 h. The Monod equation showed that the growth rate and processing speed of immobilized PM3 increased. The maximum adsorption capacities of COD and NH4+–N onto porous clay material W were 2.33 and 0.32 mg/g on the basis of Langmuir isotherm. The removal capacities of COD, NH4+–N, and TP by the immobilized PM3 were 588.24, 20.37, and 5.06 mg/l, respectively, as shown by kinetic studies. These results demonstrated that porous clay material W could improve the efficiency of microbial nitrogen and phosphorus removal, and the immobilized microorganism system could effectively treat domestic sewage. The adsorption isotherms can well describe the adsorption process. The maximum adsorption capacity of COD and NH4+–N on porous clay material W is 2.33 and 0.32 mg/g, respectively. Kinetic studies showed that the removal capacity of immobilized PM3 to COD, NH4+–N, and TP was 58.824, 20.37, and 5.06 mg/l, respectively.
Collapse
Affiliation(s)
| | - Yu Li
- Northeastern University, China
| | | | | | | | | |
Collapse
|
15
|
Wei D, Zhang H, Cai L, Guo J, Wang Y, Ji L, Song W. Calcined Mussel Shell Powder (CMSP) via Modification with Surfactants: Application for Antistatic Oil-Removal. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1410. [PMID: 30103511 PMCID: PMC6119888 DOI: 10.3390/ma11081410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 11/16/2022]
Abstract
Biomass is known to efficiently adsorb pollutants from wastewater. In this paper, we demonstrated that a new antistatic oil-cleaning material can be prepared and assembled by using two surfactants, alkyl polyglucosides (APG) and dimethyl octadecyl hydroxy ethyl ammonium nitrate (SN), to modify calcined mussel shell powder (CMSP) through a two-step hydrotherm-assisted adsorption. The pore size and structure of CMSP was measured by BET and a contact angle meter was used to characterize the surface wetting ability. XRD, FTIR, XPS, SEM, TEM, and HRTEM were employed to determine the surface structure of CMSP modified by surfactants APG and SN (MMO). In order to further characterize properties of the surface morphology and crystal structure, the HRTEM was employed to show that the MMO surface had a single crystal structure: calcite, with a crystal plane spacing of 0.2467 nm. The surface of MMO appeared to be fluffy and disperse. The antistatic and degreasing ability of as-prepared samples (MMO) was evaluated by a ZC-36 high resistance meter and BD-457 whiteness meter. The results showed that when the calcination temperature of CMSP reached 1000 °C, and the addition amount of APG and SN was 0.8 g and 0.16 g, it had an optimum antistatic effect with a surface resistivity (Rs) of 1.35 × 10⁸ Ω, and a detergency rate to oil of 17.35%. This study aims to embrace a green solution to reduce environmental pressure and make use of waste, which is of great significance to environmental protection.
Collapse
Affiliation(s)
- Danyi Wei
- College of Marine and Electromechanical Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Hailong Zhang
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Lu Cai
- College of Environmental and Science Technology, Donghua University, Shanghai 201620, China.
| | - Jian Guo
- College of Food and Medical, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yaning Wang
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Lili Ji
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wendong Song
- College of Petrochemical and Energy Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|