1
|
Yu J, Tang L, Qiao F, Liu J, Li X. Physiological and Transcriptomic Analyses Reveal the Mechanisms Underlying Methyl Jasmonate-Induced Mannitol Stress Resistance in Banana. PLANTS (BASEL, SWITZERLAND) 2024; 13:712. [PMID: 38475558 DOI: 10.3390/plants13050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
Exogenous methyl jasmonate (MeJA) application has shown promising effects on plant defense under diverse abiotic stresses. However, the mechanisms underlying MeJA-induced stress resistance in bananas are unclear. Therefore, in this study, we treated banana plants with 100 μM MeJA before inducing osmotic stress using mannitol. Plant phenotype and antioxidant enzyme activity results demonstrated that MeJA improved osmotic stress resistance in banana plants. Thereafter, to explore the molecular mechanisms underlying MeJA-induced osmotic stress resistance in banana seedlings, we conducted high-throughput RNA sequencing (RNA-seq) using leaf and root samples of "Brazilian" banana seedlings treated with MeJA for 0 h and 8 h. RNA-seq analysis showed that MeJA treatment upregulated 1506 (leaf) and 3341 (root) genes and downregulated 1768 (leaf) and 4625 (root) genes. Then, we performed gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses on the differentially expressed genes. We noted that linoleic acid metabolism was enriched in both root and leaf samples, and the genes of this pathway exhibited different expression patterns; 9S-LOX genes were highly induced by MeJA in the leaves, whereas 13S-LOX genes were highly induced in the roots. We also identified the promoters of these genes, as the differences in response elements may contribute to tissue-specific gene expression in response to MeJA application in banana seedlings. Overall, the findings of this study provide insights into the mechanisms underlying abiotic stress resistance in banana that may aid in the improvement of banana varieties relying on molecular breeding.
Collapse
Affiliation(s)
- Jiaxuan Yu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropical Crop Breeding, Haikou 570228, China
| | - Lu Tang
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
| | - Fei Qiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571737, China
| | - Juhua Liu
- National Key Laboratory for Tropical Crop Breeding, Haikou 570228, China
| | - Xinguo Li
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropical Crop Breeding, Haikou 570228, China
| |
Collapse
|
2
|
Yi SY, Lee M, Park SK, Lu L, Lee G, Kim SG, Kang SY, Lim YP. Jasmonate regulates plant resistance to Pectobacterium brasiliense by inducing indole glucosinolate biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:964092. [PMID: 36247644 PMCID: PMC9559233 DOI: 10.3389/fpls.2022.964092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/08/2022] [Indexed: 05/31/2023]
Abstract
Pectobacterium brasiliense (P. brasiliense) is a necrotrophic bacterium that causes the soft rot disease in Brassica rapa. However, the mechanisms underlying plant immune responses against necrotrophic bacterial pathogens with a broad host range are still not well understood. Using a flg22-triggered seedling growth inhibition (SGI) assay with 455 Brassica rapa inbred lines, we selected six B. rapa flagellin-insensitive lines (Brfin2-7) and three B. rapa flagellin-sensitive lines (Brfs1-3). Brfin lines showed compromised flg22-induced immune responses (oxidative burst, mitogen-activated protein kinase (MAPK) activation, and seedling growth inhibition) compared to the control line R-o-18; nevertheless, they were resistant to P. brasiliense. To explain this, we analyzed the phytohormone content and found that most Brfin lines had higher P. brasiliense-induced jasmonic acid (JA) than Brfs lines. Moreover, MeJA pretreatment enhanced the resistance of B. rapa to P. brasiliense. To explain the correlation between the resistance of Brfin lines to P. brasiliense and activated JA signaling, we analyzed pathogen-induced glucosinolate (GS) content in B. rapa. Notably, in Brfin7, the neoglucobrassicin (NGBS) content among indole glucosinolates (IGS) was significantly higher than that in Brfs2 following P. brasiliense inoculation, and genes involved in IGSs biosynthesis were also highly expressed. Furthermore, almost all Brfin lines with high JA levels and resistance to P. brasiliense had higher P. brasiliense-induced NGBS levels than Brfs lines. Thus, our results show that activated JA-mediated signaling attenuates flg22-triggered immunity but enhances resistance to P. brasiliense by inducing indole glucosinolate biosynthesis in Brassica rapa. This study provides novel insights into the role of JA-mediated defense against necrotrophic bacterial pathogens within a broad host range.
Collapse
Affiliation(s)
- So Young Yi
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Myungjin Lee
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
| | - Sun Kyu Park
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
3
|
Zhang X, Wang J, Zhu H, Wang J, Zhang H. Chemical Composition, Antibacterial, Antioxidant and Enzyme Inhibitory Activities of the Essential Oil from Leaves of Psidium guajava L. Chem Biodivers 2022; 19:e202100951. [PMID: 35344272 DOI: 10.1002/cbdv.202100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/23/2022] [Indexed: 11/05/2022]
Abstract
Guava (Psidium guajava L.) leaf essential oil (GLEO) was extracted by water distillation, and its in vitro antioxidant, antidiabetic, and antibacterial properties were evaluated. Using GC/MS to determine the chemical components of GLEO, 27 constituents were identified, accounting for 74.90 % of the total oil content, among which L-caryophyllene (24.46 %), L-calamenene (10.82 %), (-)-globulol (10.69 %), and α-copaene (8.71 %) were the main components. Subsequently, the antioxidant activity of GLEO was determined by DPPH, ABTS, and β-carotene bleaching tests. The half maximal inhibitory concentration of GLEO for three free radicals were IC50 =17.66±0.07 μg/mL, IC50 =19.28±0.03 μg/mL, and IC50 =3.17±0.01 μg/mL, respectively. Moreover, GLEO exhibited remarkable α-amylase (IC50 =13.99±0.34 μg/mL) and α-glucosidase (IC50 =5.50±1.02 μg/mL) inhibitory activities. It was effective against Streptomyces acidiscabies (MIC=1.25 μg/mL), Ralstonia solanacearum (MIC=5 μg/mL), and Erwinia carotovora subsp carotovora borgey (MIC=2.5 μg/mL), showing significant antibacterial properties. Based on the findings, given the high biological activity of GLEO, it is a biological preservative for food, medicine, and cosmetics and is valuable in natural therapy and crop disease management.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Northeast Agricultural University, Harbin, 150030, China.,School of Life Science, Jiaying University, Meizhou, 514015, China
| | - Jiali Wang
- Northeast Agricultural University, Harbin, 150030, China
| | - Hongwei Zhu
- Northeast Agricultural University, Harbin, 150030, China
| | - Jianhao Wang
- Northeast Agricultural University, Harbin, 150030, China
| | - Huajiang Zhang
- Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
4
|
Non-Targeted Metabolite Profiling Reveals Host Metabolomic Reprogramming during the Interaction of Black Pepper with Phytophthora capsici. Int J Mol Sci 2021; 22:ijms222111433. [PMID: 34768864 PMCID: PMC8583951 DOI: 10.3390/ijms222111433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Phytophthora capsici is one of the most destructive pathogens causing quick wilt (foot rot) disease in black pepper (Piper nigrum L.) to which no effective resistance has been defined. To better understand the P. nigrum-P. capsici pathosystem, we employed metabolomic approaches based on flow-infusion electrospray-high-resolution mass spectrometry. Changes in the leaf metabolome were assessed in infected and systemic tissues at 24 and 48 hpi. Principal Component Analysis of the derived data indicated that the infected leaves showed a rapid metabolic response by 24 hpi whereas the systemic leaves took 48 hpi to respond to the infection. The major sources of variations between infected leaf and systemic leaf were identified, and enrichment pathway analysis indicated, major shifts in amino acid, tricarboxylic acid cycle, nucleotide and vitamin B6 metabolism upon infection. Moreover, the individual metabolites involved in defensive phytohormone signalling were identified. RT-qPCR analysis of key salicylate and jasmonate biosynthetic genes indicated a transient reduction of expression at 24 hpi but this increased subsequently. Exogenous application of jasmonate and salicylate reduced P. capsici disease symptoms, but this effect was suppressed with the co-application of abscisic acid. The results are consistent with abscisic acid reprogramming, salicylate and jasmonate defences in infected leaves to facilitate the formation of disease. The augmentation of salicylate and jasmonate defences could represent an approach through which quick wilt disease could be controlled in black pepper.
Collapse
|
5
|
Cai Y, Ma Z, Ogutu CO, Zhao L, Liao L, Zheng B, Zhang R, Wang L, Han Y. Potential Association of Reactive Oxygen Species With Male Sterility in Peach. FRONTIERS IN PLANT SCIENCE 2021; 12:653256. [PMID: 33936139 PMCID: PMC8079786 DOI: 10.3389/fpls.2021.653256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/08/2021] [Indexed: 05/11/2023]
Abstract
Male sterility is an important agronomic trait for hybrid vigor utilization and hybrid seed production, but its underlying mechanisms remain to be uncovered. Here, we investigated the mechanisms of male sterility in peach using a combined cytology, physiology, and molecular approach. Cytological features of male sterility include deformed microspores and tapetum cells along with absence of pollen grains. Microspores had smaller nucleus at the mononuclear stage and were compressed into belts and subsequently disappeared in the anther cavity, whereas tapetum cells were swollen and vacuolated, with a delayed degradation to flowering time. Male sterile anthers had an ROS burst and lower levels of major antioxidants, which may cause abnormal development of microspores and tapetum, leading to male sterility in peach. In addition, the male sterility appears to be cytoplasmic in peach, which could be due to sequence variation in the mitochondrial genome. Our results are helpful for further investigation of the genetic mechanisms underlying male sterility in peach.
Collapse
Affiliation(s)
- Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhishen Ma
- Shijiazhuang Pomology Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Collins Otieno Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Ruoxi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Lu Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Yuepeng Han,
| |
Collapse
|
6
|
An X, Chen J, Jin G. Transcriptome profiling of kenaf ( Hibiscus cannabinus L.) under plumbic stress conditions implies the involvement of NAC transcription factors regulating reactive oxygen species-dependent programmed cell death. PeerJ 2020; 8:e8733. [PMID: 32195056 PMCID: PMC7069409 DOI: 10.7717/peerj.8733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 12/23/2022] Open
Abstract
Heavy metal contamination of soils has become a serious global issue, and bioremediation has been proposed as a potential solution. Kenaf (Hibiscus cannabinus L.) is a fast growing, non-woody multipurpose annual plant that is suitable for removing excess heavy metals from soils. However, there has been relatively little research on the kenaf molecular mechanisms induced in response to an exposure to heavy metal stress. Thus, whole kenaf seedlings grown under control (normal) and stress (plumbic treatment) conditions were sampled for transcriptome sequencing. Unigenes generated through the de novo assembly of clean reads were functionally annotated based on seven databases. Transcription factor (TF)-coding genes were predicted and the physiological traits of the seedlings were analyzed. A total of 44.57 Gb high-quality sequencing data were obtained, which were assembled into 136,854 unigenes. These unigenes included 1,697 that were regarded as differentially expressed genes (DEGs). A GO enrichment analysis of the DEGs indicated that many of them are related to catalytic activities. Moreover, the DEGs appeared to suggest that numerous KEGG pathways are suppressed (e.g., the photosynthesis-involving pathways) or enhanced (like the flavonoid metabolism pathways) in response to Pb stress. Of the 2,066 predicted TF-coding genes, only 55 were differentially expressed between the control and stressed samples. Further analyses suggested that the plumbic stress treatment induced reactive oxygen species-dependent programmed cell death in the kenaf plants via a process that may be regulated by the differentially expressed NAC TF genes.
Collapse
Affiliation(s)
- Xia An
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Chen
- Huazhong Agricultural University, Wuhan, China
| | - Guanrong Jin
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Samsatly J, Bayen S, Jabaji SH. Vitamin B6 Is Under a Tight Balance During Disease Development by Rhizoctonia solani on Different Cultivars of Potato and on Arabidopsis thaliana Mutants. FRONTIERS IN PLANT SCIENCE 2020; 11:875. [PMID: 32670323 PMCID: PMC7327096 DOI: 10.3389/fpls.2020.00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/28/2020] [Indexed: 05/06/2023]
Abstract
Vitamin B6 is well recognized as an essential antioxidant and plays a role in stress responses. Co-expression of plant and pathogen-derived vitamin B6 genes is critical during disease development of R. solani. However, little is known about the functionality of vitamin B6 vitamers during plant-R. solani interactions and their involvement in disease tolerance. Here, we explored the possible involvement of vitamin B6 during disease progression of potato cultivars of different susceptibility levels to R. solani. A distinct pattern of gene expression, pyridoxine (PN) concentration, and fungal biomass was found in the susceptible cv. Russet Burbank and tolerant cv. Chieftain. Accumulation of reactive oxygen species (ROS) in R. solani mycelia or plant tissues applying non-fluorescence or fluorescence methods was related to up-regulation in the vitamin B6 pathway and is indicative of oxidative stress. Russet Burbank was susceptible to R. solani, which was linked to reduced amounts of VB6 content. Prior to infection, constitutive PN levels were significantly higher in Russet Burbank by 1.6-fold compared to Chieftain. Upon infection with R. solani, PN levels in infected tissues increased more in Chieftain (1.7-fold) compared to Russet Burbank (1.4-fold). R. solani AG3 infection of potato sprouts in both cultivars significantly activates the fungal and plant vitamin B6 and glutathione-S-transferase (GST) genes in a tissue-specific response. Significant fold increases of transcript abundance of the fungal genes ranged from a minimum of 3.60 (RsolSG3GST) to a maximum of 13.91 (RsolAG3PDX2) in the surrounding necrotic lesion tissues (zone 1). On the other hand, PCA showed that the top plant genes STGST and STPDX1.1 were linked to both tissues of necrotic lesions (zone 2) and their surrounding areas of necrotic lesions. Functional characterization of Arabidopsis pdx1.3 mutants challenged with R. solani provided evidence into the role of the vitamin B6 pathway in the maintenance of plant tolerance during disease progression. Overall, we demonstrate that the production of vitamin VB6 is under tight control and is an essential determinant of disease development during the interaction of R. solani with potato cultivars.
Collapse
Affiliation(s)
- Jamil Samsatly
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Suha H. Jabaji
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- *Correspondence: Suha H. Jabaji,
| |
Collapse
|