1
|
Aghanejad A, Kheiriabad S, Ghaffari M, Namvar Aghdash S, Ghafouri N, Ezzati Nazhad Dolatabadi J, Andishmand H, Hamblin MR. Targeted co-delivery nanosystem based on methotrexate, curcumin, and PAMAM dendrimer for improvement of the therapeutic efficacy in cervical cancer. Sci Rep 2025; 15:1813. [PMID: 39805840 PMCID: PMC11730290 DOI: 10.1038/s41598-024-82074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The simultaneous administration of multiple drugs within identical nanocarriers to cancer cells or tissues can result in the effective action of drugs at reduced concentrations. In this investigation, PAMAM dendrimers (G4-PAMAM) were employed to link with methotrexate (MTX) using DCC/NHS chemistry and followed by the entrapment of curcumin (Cur) within it. The establishment of covalent bonds between MTX and the PAMAM dendrimer led to PAMAM-MTX interaction, verified and described through FT-IR. Various techniques were employed to evaluate the structural properties of the prepared Cur-PAMAM-MTX NC. The Cur-PAMAM-MTX NC, after preparation, exhibited a particle size of 249 nm, with an encapsulation efficiency (EE) of ~ 81% for Cur. The cumulative in vitro release of Cur-loaded NC indicated a controlled release influenced by time and pH. The cell study results revealed that Cur-PAMAM-MTX NC exhibited significantly higher cytotoxicity than free MTX, Cur, and other formulations tested in vitro. The synergistic effect of co-delivery of MTX and Cur by PAMAM significantly increased cytotoxicity. Besides, the significant ROS level rising has been shown in the treated cells with MTX-PAMAM-Cur. Considering these findings, the co-delivery NC shows promise for additional in vitro investigations and possesses the capacity to function as an effective framework for the combined delivery of MTX and Cur in cervical cancer chemotherapy.
Collapse
Affiliation(s)
- Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Kheiriabad
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Ghaffari
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Namvar Aghdash
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Neda Ghafouri
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
2
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
3
|
Padaga SG, Bhatt H, Ch S, Paul M, Itoo AM, Ghosh B, Roy S, Biswas S. Glycol Chitosan-Poly(lactic acid) Conjugate Nanoparticles Encapsulating Ciprofloxacin: A Mucoadhesive, Antiquorum-Sensing, and Biofilm-Disrupting Treatment Modality for Bacterial Keratitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18360-18385. [PMID: 38573741 DOI: 10.1021/acsami.3c18061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Bacterial keratitis (BK) causes visual morbidity/blindness if not treated effectively. Here, ciprofloxacin (CIP)-loaded nanoparticles (NPs) using glycol chitosan (GC) and poly(lactic acid) (PLA) conjugate at three different ratios (CIP@GC(PLA) NPs (1:1,5,15)) were fabricated. CIP@GC(PLA) NPs (1:1) were more effective than other tested ratios, indicating the importance of optimal hydrophobic/hydrophilic balance for corneal penetration and preventing bacterial invasion. The CIP@GC(PLA) (NPs) (1:1) realized the highest association with human corneal epithelial cells, which were nonirritant to the hen's egg-chorioallantoic membrane test (HET-CAM test) and demonstrated significant antibacterial response in the in vitro minimum inhibitory, bactericidal, live-dead cells, zone of inhibition, and biofilm inhibition assays against the keratitis-inducing pathogen Pseudomonas aeruginosa. The antiquorum sensing activity of GC has been explored for the first time. The NPs disrupted the bacterial quorum sensing by inhibiting the production of virulence factors, including acyl homoserine lactones, pyocyanin, and motility, and caused significant downregulation of quorum sensing associated genes. In the in vivo studies, CIP@GC(PLA) NPs (1:1) displayed ocular retention in vivo (∼6 h) and decreased the opacity and the bacterial load effectively. Overall, the CIP@GC(PLA) NP (1:1) is a biofilm-disrupting antiquorum sensing treatment regimen with clinical translation potential in BK.
Collapse
Affiliation(s)
- Sri Ganga Padaga
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Himanshu Bhatt
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, Kallam Anji Reddy Campus, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
4
|
Ji G, Li Y, Zhang Z, Li H, Sun P. Recent advances of novel targeted drug delivery systems based on natural medicine monomers against hepatocellular carcinoma. Heliyon 2024; 10:e24667. [PMID: 38312669 PMCID: PMC10834828 DOI: 10.1016/j.heliyon.2024.e24667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of liver cancer, is often diagnosed at an advanced stage. Surgical interventions are often ineffective, leading HCC patients to rely on systemic chemotherapy. Unfortunately, commonly used chemotherapeutic drugs have limited efficacy and can adversely affect vital organs, causing significant physical and psychological distress for patients. Natural medicine monomers (NMMs) have shown promising efficacy and safety profiles in HCC treatment, garnering attention from researchers. In recent years, the development of novel targeted drug delivery systems (TDDS) combining NMMs with nanocarriers has emerged. These TDDS aim to concentrate drugs effectively in HCC cells by manipulating the characteristics of nanomedicines, leveraging receptor and ligand interactions, and utilizing endogenous stimulatory responses to promote specific nanomedicines distribution. This comprehensive review presents recent research on TDDS for HCC treatment using NMMs from three perspectives: passive TDDS, active TDDS, and stimuli-responsive drug delivery systems (SDDS). It consolidates the current state of research on TDDS for HCC treatment with NMMs and highlights the potential of these innovative approaches in improving treatment outcomes. Moreover, the review also identifies research gaps in the related fields to provide references for future targeted therapy research in HCC.
Collapse
Affiliation(s)
- Guanjie Ji
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yue Li
- Department of Clinical Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Ping Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
5
|
Hegde AR, Paul M, Kumbham S, Roy AA, Ahmad SF, Parekh H, Biswas S, Mutalik S. Ameliorative anticancer effect of dendrimeric peptide modified liposomes of letrozole: In vitro and in vivo performance evaluations. Int J Pharm 2023; 648:123582. [PMID: 37940082 DOI: 10.1016/j.ijpharm.2023.123582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Letrozole (LTZ) loaded dendrimeric nano-liposomes were prepared for targeted delivery to breast cancer cells. Surface modification with cationic peptide dendrimers (PDs) and a cancer specific ligand, transferrin (Tf), was attempted. Arginine-terminated PD (D-1) and Arginine-terminated, lipidated PD (D-2) were synthesized using Solid Phase Peptide Synthesis, purified by preparative HPLC and characterized using 1HNMR, MS and DSC analyses. Surface modification of drug loaded liposomes with Tf and/or PD was carried out. Formulations were characterized using FTIR, DSC, 1HNMR, XRD and TEM. Tf-conjugated LTZ liposomes (LTf) and Tf/D-2-conjugated LTZ liposomes (LTfD-2) showed greater cytotoxic potential (IC50 = 95.03 µg/mL and 23.75 µg/mL respectively) with enhanced cellular uptake in MCF7 cells compared to plain LTZ. Blocking studies of Tf (Tf-receptor mediated internalization) revealed decreased uptake of LTf and LTfD-2 confirming the role of Tf in uptake of Tf-conjugated liposomes. Intravenous treatment with LTfD-2 caused highest reduction in tumor volumes of female BALB/c-nude mice (145 mm3) compared to plain LTZ (605 mm3) and unconjugated LTZ liposomes (LP) (300 mm3). In vivo biodistribution studies revealed higher fluorescence in tumor tissue and liver of LTfD-2 treated mice than LTf or LP treatment. Immunohistochemical studies revealed greater apoptotic potential of LTfD-2 as indicated by TUNEL assay and ROS detection assay. The study reveals the superior therapeutic efficacy of the developed LTZ liposomal nanocarriers using PDs to enhance the transfection efficiency in addition to modifying the surface characteristics by attaching a targeting ligand for active drug targeting to breast cancer cells.
Collapse
Affiliation(s)
- Aswathi R Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India; Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, Karnataka, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana State, India
| | - Soniya Kumbham
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana State, India
| | - Amrita Arup Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Harendra Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
6
|
Moammeri A, Chegeni MM, Sahrayi H, Ghafelehbashi R, Memarzadeh F, Mansouri A, Akbarzadeh I, Abtahi MS, Hejabi F, Ren Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater Today Bio 2023; 23:100837. [PMID: 37953758 PMCID: PMC10632535 DOI: 10.1016/j.mtbio.2023.100837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The advent of nanotechnology has led to an increased interest in nanocarriers as a drug delivery system that is efficient and safe. There have been many studies addressing nano-scale vesicular systems such as liposomes and niosome is a newer generation of vesicular nanocarriers. The niosomes provide a multilamellar carrier for lipophilic and hydrophilic bioactive substances in the self-assembled vesicle, which are composed of non-ionic surfactants in conjunction with cholesterol or other amphiphilic molecules. These non-ionic surfactant vesicles, simply known as niosomes, can be utilized in a wide variety of technological applications. As an alternative to liposomes, niosomes are considered more chemically and physically stable. The methods for preparing niosomes are more economic. Many reports have discussed niosomes in terms of their physicochemical properties and applications as drug delivery systems. As drug carriers, nano-sized niosomes expand the horizons of pharmacokinetics, decreasing toxicity, enhancing drug solvability and bioavailability. In this review, we review the components and fabrication methods of niosomes, as well as their functionalization, characterization, administration routes, and applications in cancer gene delivery, and natural product delivery. We also discuss the limitations and challenges in the development of niosomes, and provide the future perspective of niosomes.
Collapse
Affiliation(s)
- Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Farkhondeh Memarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Afsoun Mansouri
- School of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Sadat Abtahi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Faranak Hejabi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| |
Collapse
|
7
|
Casadidio C, Hartman JEM, Mesquita B, Haegebaert R, Remaut K, Neumann M, Hak J, Censi R, Di Martino P, Hennink WE, Vermonden T. Effect of Polyplex Size on Penetration into Tumor Spheroids. Mol Pharm 2023; 20:5515-5531. [PMID: 37811785 PMCID: PMC10630948 DOI: 10.1021/acs.molpharmaceut.3c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Ovarian cancer is one of the most lethal gynecological cancers in the world. In recent years, nucleic acid (NA)-based formulations have been shown to be promising treatments for ovarian cancer, including tumor nodules. However, gene therapy is not that far advanced in clinical reality due to unfavorable physicochemical properties of the NAs, such as high molecular weight, poor cellular uptake, rapid degradation by nucleases, etc. One of the strategies used to overcome these drawbacks is the complexation of anionic NAs via electrostatic interactions with cationic polymers, resulting in the formation of so-called polyplexes. In this work, the role of the size of pDNA and siRNA polyplexes on their penetration into ovarian-cancer-based tumor spheroids was investigated. For this, a methoxypoly(ethylene glycol) poly(2-(dimethylamino)ethyl methacrylate) (mPEG-pDMAEMA) diblock copolymer was synthesized as a polymeric carrier for NA binding and condensation with either plasmid DNA (pDNA) or short interfering RNA (siRNA). When prepared in HEPES buffer (10 mM, pH 7.4) at a nitrogen/phosphate (N/P) charge ratio of 5 and pDNA polyplexes were formed with a size of 162 ± 11 nm, while siRNA-based polyplexes displayed a size of 25 ± 2 nm. The polyplexes had a slightly positive zeta potential of +7-8 mV in the same buffer. SiRNA and pDNA polyplexes were tracked in vitro into tumor spheroids, resembling in vivo avascular ovarian tumor nodules. For this purpose, reproducible spheroids were obtained by coculturing ovarian carcinoma cells with primary mouse embryonic fibroblasts in different ratios (5:2, 1:1, and 2:5). Penetration studies revealed that after 24 h of incubation, siRNA polyplexes were able to penetrate deeper into the homospheroids (composed of only cancer cells) and heterospheroids (cancer cells cocultured with fibroblasts) compared to pDNA polyplexes which were mainly located in the rim. The penetration of the polyplexes was slowed when increasing the fraction of fibroblasts present in the spheroids. Furthermore, in the presence of serum siRNA polyplexes encoding for luciferase showed a high cellular uptake in 2D cells resulting in ∼50% silencing of luciferase expression. Taken together, these findings show that self-assembled small siRNA polyplexes have good potential as a platform to test ovarian tumor nodulus penetration..
Collapse
Affiliation(s)
- Cristina Casadidio
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
- School
of Pharmacy, Drug Delivery Division, University
of Camerino, CHiP Research Center, Via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| | - Jet E. M. Hartman
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Bárbara
S. Mesquita
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Ragna Haegebaert
- Laboratory
of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory
of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Myriam Neumann
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Jaimie Hak
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Roberta Censi
- School
of Pharmacy, Drug Delivery Division, University
of Camerino, CHiP Research Center, Via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
- Recusol
Srl, Via del Bastione
16, 62032 Camerino, Macerata, Italy
| | - Piera Di Martino
- Department
of Pharmacy, “G. D’Annunzio”
University of Chieti and Pescara, Via dei Vestini 1, 66100 Chieti, Chieti, Italy
- Recusol
Srl, Via del Bastione
16, 62032 Camerino, Macerata, Italy
| | - Wim E. Hennink
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
8
|
Shelash Al-Hawary SI, Abdalkareem Jasim S, M Kadhim M, Jaafar Saadoon S, Ahmad I, Romero Parra RM, Hasan Hammoodi S, Abulkassim R, M Hameed N, K Alkhafaje W, Mustafa YF, Javed Ansari M. Curcumin in the treatment of liver cancer: From mechanisms of action to nanoformulations. Phytother Res 2023; 37:1624-1639. [PMID: 36883769 DOI: 10.1002/ptr.7757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 03/09/2023]
Abstract
Liver cancer is the sixth most prevalent cancer and ranks third in cancer-related death, after lung and colorectal cancer. Various natural products have been discovered as alternatives to conventional cancer therapy strategies, including radiotherapy, chemotherapy, and surgery. Curcumin (CUR) with antiinflammatory, antioxidant, and antitumor activities has been associated with therapeutic benefits against various cancers. It can regulate multiple signaling pathways, such as PI3K/Akt, Wnt/β-catenin, JAK/STAT, p53, MAPKs, and NF-ĸB, which are involved in cancer cell proliferation, metastasis, apoptosis, angiogenesis, and autophagy. Due to its rapid metabolism, poor oral bioavailability, and low solubility in water, CUR application in clinical practices is restricted. To overcome these limitations, nanotechnology-based delivery systems have been applied to use CUR nanoformulations with added benefits, such as reducing toxicity, improving cellular uptake, and targeting tumor sites. Besides the anticancer activities of CUR in combating various cancers, especially liver cancer, here we focused on the CUR nanoformulations, such as micelles, liposomes, polymeric, metal, and solid lipid nanoparticles, and others, in the treatment of liver cancer.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-Anbar-Ramadi, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Waleed K Alkhafaje
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
9
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
10
|
Vysyaraju NR, Paul M, Ch S, Ghosh B, Biswas S. Olaparib@human serum albumin nanoparticles as sustained drug-releasing tumor-targeting nanomedicine to inhibit growth and metastasis in the mouse model of triple-negative breast cancer. J Drug Target 2022; 30:1088-1105. [PMID: 35723068 DOI: 10.1080/1061186x.2022.2092623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Poly(ADP-ribose) polymerase inhibitor olaparib demonstrated therapeutic effectiveness in highly metastatic triple-negative breast cancer (TNBC). However, olaparib offers a weak therapeutic response in wild-type BRCA cancers due to the drug's poor bioavailability. Here, a bioinspired/active-tumor targeted nanoparticles system of human serum albumin with physical entrapment of olaparib was prepared via a low-energy desolvation technique using the crosslinker glutaraldehyde. The developed OLA@HSA NPs were nanosize (∼140 nm), kinetically stable with a low polydispersity (0.3), exhibited olaparib entrapment (EE 76.01 ± 2.53%, DL 6.76 ± 0.22%), and sustained drug release at pH 7.4 with an enhancement of drug release in acidic pH. OLA@HSA NPs decreased the half-maximal inhibitory concentrations (IC50) of olaparib by 1.6, 1.8-fold in 24 h and 2.2, 2.4 folds in 48 h for human (MDA-MB 231) and mouse (4T1) TNBC cells, respectively, mediated by their enhanced time-dependent cellular uptake than free olaparib. The OLA@HSA-OA NPs induced concentration-dependent phosphatidylserine (apoptotic marker) externalization and arrested the cell population in the G2/M phase in both the tested cell lines at a higher level than free olaparib. The NPs formulation increased DNA fragmentation, mitochondrial membrane depolarization, and ROS generation than the free olaparib. The in vivo study conducted using 4T1-Luc tumor-bearing mice demonstrated strong tumor growth inhibitory potential of OLA@HSA NPs by elevating apoptosis ROS generation and reducing the level of the antiproliferative marker, Ki-67. OLA@HSA NPs reduced the occurrence of lung metastasis (formation of metastasis nodules decreased by ∼10 fold). OLA@HSA NPs could be a promising nanomedicine for the TNBC treatment.
Collapse
Affiliation(s)
- Nageswara Rao Vysyaraju
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, Telangana, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, Telangana, India
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, Telangana, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, Telangana, India
| |
Collapse
|
11
|
Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022; 17:881-911. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary diseases such as lung cancer, asthma and tuberculosis have remained one of the common challenges globally. Polymeric micelles (PMs) have emerged as an effective technique for achieving targeted drug delivery for a local as well as a systemic effect. These PMs encapsulate and protect hydrophobic drugs, increase pulmonary targeting, decrease side effects and enhance drug efficacy through the inhalation route. In the current review, emphasis has been placed on the different barriers encountered by the drugs given via the pulmonary route and the mechanism of PMs in achieving drug targeting. The applications of PMs in different pulmonary diseases have also been discussed in detail.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2007, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
12
|
Ghosh S, Jayaram P, Kabekkodu SP, Satyamoorthy K. Targeted drug delivery in cervical cancer: Current perspectives. Eur J Pharmacol 2022; 917:174751. [PMID: 35021110 DOI: 10.1016/j.ejphar.2022.174751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is preventable yet one of the most prevalent cancers among women around the globe. Though regular screening has resulted in the decline in incidence, the disease claims a high number of lives every year, especially in the developing countries. Owing to rather aggressive and non-specific nature of the conventional chemotherapeutics, there is a growing need for newer treatment modalities. The advent of nanotechnology has assisted in this through the use of nanocarriers for targeted drug delivery. A number of nanocarriers are continuously being developed and studied for their application in drug delivery. The present review summarises the different drug delivery approaches and nanocarriers that can be useful, their advantages and limitation.
Collapse
Affiliation(s)
- Supriti Ghosh
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
13
|
Farhoudi L, Kesharwani P, Majeed M, Johnston TP, Sahebkar A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int J Pharm 2022; 617:121622. [PMID: 35227805 DOI: 10.1016/j.ijpharm.2022.121622] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023]
|
14
|
Martinent R, Tawffik S, López-Andarias J, Moreau D, Laurent Q, Matile S. Dithiolane quartets: thiol-mediated uptake enables cytosolic delivery in deep tissue. Chem Sci 2021; 12:13922-13929. [PMID: 34760179 PMCID: PMC8549803 DOI: 10.1039/d1sc04828g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The cytosolic delivery of various substrates in 3D multicellular spheroids by thiol-mediated uptake is reported. This is important because most orthodox systems, including polycationic cell-penetrating peptides, fail to deliver efficiently into deep tissue. The grand principles of supramolecular chemistry, that is the pH dependence of dynamic covalent disulfide exchange with known thiols on the transferrin receptor, are proposed to account for transcytosis into deep tissue, while the known but elusive exchange cascades along the same or other partners assure cytosolic delivery in kinetic competition. For quantitative detection in the cytosol, the 2D chloroalkane penetration assay (CAPA) is translated to 3D deep tissue. The targeted delivery of quantum dots, otherwise already troublesome in 2D culture, and the controlled release of mechanophores are realized to exemplify the power of thiol-mediated uptake into spheroids. As transporters, dithiolane quartets on streptavidin templates are introduced as modular motifs. Built from two amino acids only, the varied stereochemistry and peptide sequence are shown to cover maximal functional space with minimal structural change, i.e., constitutional isomers. Reviving a classic in peptide chemistry, this templated assembly of β quartets promises to expand streptavidin biotechnology in new directions, while the discovery of general cytosolic delivery in deep tissue as an intrinsic advantage further enhances the significance and usefulness of thiol-mediated uptake.
Collapse
Affiliation(s)
- Rémi Martinent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Salman Tawffik
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Dimitri Moreau
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Quentin Laurent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| |
Collapse
|
15
|
Bobde Y, Paul M, Patel T, Biswas S, Ghosh B. Polymeric micelles of a copolymer composed of all-trans retinoic acid, methoxy-poly(ethylene glycol), and b-poly(N-(2 hydroxypropyl) methacrylamide) as a doxorubicin-delivery platform and for combination chemotherapy in breast cancer. Int J Pharm 2021; 606:120866. [PMID: 34237409 DOI: 10.1016/j.ijpharm.2021.120866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022]
Abstract
Delivery of combination chemotherapeutic agents to the tumor via nanovesicles has the potential for superior tumor suppression and reduced toxicity. Herein, we prepare a block copolymer (mPH-RA) composed of methoxy-poly(ethylene glycol) (mPEG), b-poly(N-(2 hydroxypropyl) methacrylamide) (pHPMA), and all-trans retinoic acid (ATRA) by conjugating ATRA to the pre-formed copolymer, mPEG-b-pHPMA(mP-b-pH). Doxorubicin-loaded micelles, Dox@mP-b-pH, and Dox@mPH-RA were characterized by determining particle size, zeta potential, % DL, EE, Dox release, hemolysis study, and by DSC. The Dox@mPH-RA micelles (mPH-RA: Dox ratios of 10:0.5-2) displayed nano-size (36-45 nm), EE. 26-74%, and DL. 2.9-5.6%. Dox@mPH-RA micelles displayed the highest penetrability and cytotoxicity than free Dox and Dox@mP-b-pH micelles in breast cancer cell lines. Dox@mPH-RA exhibited the highest induction of apoptosis (94.1 ± 3%) than Dox (52.1 ± 4.5%), and Dox@mP-b-pH (81.7 ± 3%), and arrested cells in the highest population in G2 and S phase. Dox@mPH-RA increased the t1/2 and Cmax of Dox and demonstrated improved therapeutic efficacy and highest Dox distribution to the tumor. The Dox@mPH-RA increased the levels of apoptosis markers, caspase 3, 7, Ki-67, and caused the highest DNA fragmentation. The presence of RA improved the micelles' physicochemical properties, Dox-loading ability, and the therapeutic potential in Dox@mPH-RA via the combination therapeutic strategy.
Collapse
Affiliation(s)
- Yamini Bobde
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India; Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| |
Collapse
|
16
|
Biswas S. Polymeric micelles as drug-delivery systems in cancer: challenges and opportunities. Nanomedicine (Lond) 2021; 16:1541-1544. [PMID: 34169749 DOI: 10.2217/nnm-2021-0081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tweetable abstract Micelles are nanocarriers for hydrophobic chemotherapeutic drugs. This editorial discusses the current status of preclinical micellar research and sheds light on the possibility of their clinical translation.
Collapse
Affiliation(s)
- Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana, 500078, India
| |
Collapse
|
17
|
Macedo A, Filipe P, Thomé NG, Vieira J, Oliveira C, Teodósio C, Ferreira R, Roque L, Fonte P. A Brief Overview of the Oral Delivery of Insulin as an Alternative to the Parenteral Delivery. Curr Mol Med 2021; 20:134-143. [PMID: 31965934 DOI: 10.2174/1566524019666191010095522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus greatly affects the quality of life of patients and has a worldwide prevalence. Insulin is the most commonly used drug to treat diabetic patients and is usually administered through the subcutaneous route. However, this route of administration is ineffective due to the low concentration of insulin at the site of action. This route of administration causes discomfort to the patient and increases the risk of infection due to skin barrier disturbance caused by the needle. The oral administration of insulin has been proposed to surpass the disadvantages of subcutaneous administration. In this review, we give an overview of the strategies to deliver insulin by the oral route, from insulin conjugation to encapsulation into nanoparticles. These strategies are still under development to attain efficacy and effectiveness that are expected to be achieved in the near future.
Collapse
Affiliation(s)
- Ana Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Patrícia Filipe
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.,Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Natália G Thomé
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - João Vieira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Carolina Oliveira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Teodósio
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Raquel Ferreira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Luís Roque
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Pedro Fonte
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.,Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,IBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
18
|
Wang J, Liu J, Huang F, Wang H, Wang X, Liu F, Yang H, Xun Y, Jiao WQ, Liu D. Logic gate nanocarriers based on pH and ROS dual sensitive poly(orthoester-thioether) for enhanced anticancer drug delivery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Lu Y, Zhu D, Gui L, Li Y, Wang W, Liu J, Wang Y. A dual-targeting ruthenium nanodrug that inhibits primary tumor growth and lung metastasis via the PARP/ATM pathway. J Nanobiotechnology 2021; 19:115. [PMID: 33892746 PMCID: PMC8063440 DOI: 10.1186/s12951-021-00799-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Many studies have found that ruthenium complexes possess unique biochemical characteristics and inhibit tumor growth or metastasis. Results Here, we report the novel dual-targeting ruthenium candidate 2b, which has both antitumor and antimetastatic properties and targets tumor sites through the enhanced permeability and retention (EPR) effect and transferrin/transferrin receptor (TF/TFR) interaction. The candidate 2b is composed of ruthenium-complexed carboline acid and four chloride ions. In vitro, 2b triggered DNA cleavage and thus blocked cell cycle progression and induced apoptosis via the PARP/ATM pathway. In vivo,2b inhibited not only Lewis lung cancer (LLC) tumor growth but also lung metastasis. We detected apoptosis and decreased CD31 expression in tumor tissues, and ruthenium accumulated in the primary tumor tissue of C57BL/6 mice implanted with LLC cells. Conclusions Thus, we conclude that 2b targets tumors, inhibits tumor growth and prevents lung metastasis.![]()
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10 Xi Tou Tiao, You An Men, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, People's Republic of China
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10 Xi Tou Tiao, You An Men, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, People's Republic of China
| | - Lin Gui
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10 Xi Tou Tiao, You An Men, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, People's Republic of China
| | - Yuanming Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jiawang Liu
- Medicinal Chemistry Core, The University of Tennessee Health Science Center, 579 College of Pharmacy Building, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10 Xi Tou Tiao, You An Men, Beijing, 100069, People's Republic of China. .,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, People's Republic of China.
| |
Collapse
|
20
|
Phenylboronic acid-conjugated chitosan nanoparticles for high loading and efficient delivery of curcumin. Carbohydr Polym 2021; 256:117497. [PMID: 33483024 DOI: 10.1016/j.carbpol.2020.117497] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
In order to achieve high loading and efficient delivery of curcumin, phenylboronic acid-conjugated chitosan nanoparticles were prepared by a simple desolvation method. These nanoparticles exhibited a regular spherical shape with the average size about 200-230 nm and narrow size distribution, which were kinetically stable under physiological condition. Due to boronate ester formation between curcumin and phenylboronic acid groups in the nanoparticles, and the hydrogen bonding interactions between curcumin and nanocarriers, curcumin was successfully loaded into the nanoparticles with high drug loading content. These curcumin-loaded nanoparticles showed pH and reactive oxygen species (ROS)-triggered drug release behavior. In vitro cell experiments revealed that the blank nanoparticles were completely nontoxic to cultured cells, and the curcumin-loaded nanoparticles exhibited efficient antitumor efficiency against cancer cells. Moreover, the drug-loaded nanoparticles performed an enhanced growth inhibition in three-dimensional multicellular tumor spheroids. Thus, these nanocarriers would be a promising candidate for curcumin delivery in tumor treatment.
Collapse
|
21
|
Wang J, Zhang Z, Ai Y, Liu F, Chen MM, Liu D. Lactobionic acid-modified thymine-chitosan nanoparticles as potential carriers for methotrexate delivery. Carbohydr Res 2021; 501:108275. [PMID: 33657498 DOI: 10.1016/j.carres.2021.108275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/24/2023]
Abstract
In order to achieve efficient delivery of methotrexate (MTX), thymine-chitosan nanoparticles (Thy-Cs NPs) were prepared, and further decorated with lactobionic acid (LA) to obtain tumor-targeting nanoparticles (LA-Thy-Cs NPs). These nanoparticles possessed a regular spherical structure with the average size about 190-250 nm and narrow size distribution, which were kinetically stable in the physiological environment. Due to electrostatic interactions and multiple hydrogen-bonding interactions between MTX and carriers, MTX was loaded into Thy-Cs NPs with high drug loading content (~20%). MTX release from Thy-Cs NPs was significantly accelerated in the mildly acidic environment due to the destruction of two types of non-covalent interactions. In vitro cell experiments demonstrated that LA-Thy-Cs NPs could be efficiently internalized into hepatoma carcinoma cells, leading to higher cytotoxicity. Moreover, MTX-loaded LA-Thy-Cs NPs performed an enhanced growth inhibition in three-dimensional multicellular tumor spheroids. Thus, the LA decorated thymine-chitosan nanocarriers can be a promising candidate for efficient delivery of MTX.
Collapse
Affiliation(s)
- Jun Wang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong, PR China
| | - Zongyong Zhang
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, Zhejiang, PR China
| | - Yilong Ai
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, PR China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong, PR China
| | - Min-Min Chen
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong, PR China
| | - Dahai Liu
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong, PR China.
| |
Collapse
|
22
|
Therapeutic role of curcumin and its novel formulations in gynecological cancers. J Ovarian Res 2020; 13:130. [PMID: 33148295 PMCID: PMC7643381 DOI: 10.1186/s13048-020-00731-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Gynecological cancers are among the leading causes of cancer-associated mortality worldwide. While the number of cases are rising, current therapeutic approaches are not efficient enough. There are considerable side-effects as well as treatment resistant types. In addition, which all make the treatment complicated for afflicted cases. Therefore, in order to improve efficacy of the treatment process and patients’ quality of life, searching for novel adjuvant treatments is highly warranted. Curcumin, a promising natural compound, is endowed with numerous therapeutic potentials including significant anticancer effects. Recently, various investigations have demonstrated the anticancer effects of curcumin and its novel analogues on gynecological cancers. Moreover, novel formulations of curcumin have resulted in further propitious effects. This review discusses these studies and highlights the possible underlying mechanisms of the observed effects.
Collapse
|
23
|
Chen Z, Xu L, Gao X, Wang C, Li R, Xu J, Zhang M, Panichayupakaranant P, Chen H. A multifunctional CeO 2@SiO 2-PEG nanoparticle carrier for delivery of food derived proanthocyanidin and curcumin as effective antioxidant, neuroprotective and anticancer agent. Food Res Int 2020; 137:109674. [PMID: 33233251 DOI: 10.1016/j.foodres.2020.109674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/04/2020] [Accepted: 09/06/2020] [Indexed: 02/05/2023]
Abstract
The nanoparticle systems could effectively overcome the drug delivery challenges of food bioactive compounds. In this study, a novel and effective multifunctional PEG modified CeO2@SiO2 nanoparticle (CSP-NPs) system was successfully fabricated. Food derived proanthocyanidin (PAC) and curcumin (Cur) were loaded onto CSP-NPs and formed as PAC-NPs and Cur-NPs. Fourier transform Infrared spectra, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and dynamic light scattering were used to characterize the prepared NPs. CSP-NPs, PAC-NPs and Cur-NPs displayed spherical shape with about 35-45 nm size. The bioactivity analysis revealed that CSP-NPs system could effectively deliver PAC and Cur to exhibit strong antioxidant activity, potent neuroprotective effect against Aβ1-42-mediated toxicity in PC-12 cells (recovered cell viability from 57.5% to 81.0% at the dose of 25 μg/mL) and effective antiproliferative effects on HepG2 and Hela cells. Besides, all prepared nanoparticles (0-100 µg/ml) used in this study showed no significant toxicity on cell models of antioxidative and neuroprotective activities, excepting for cancer cells, suggesting that these nanoparticles had the potential of being utilized in drug delivery. Therefore, CSP-NPs might be a promising delivery system for hydrophilic molecule proanthocyanidin and hydrophobic molecule curcumin against the oxidative damage, neurodegenerative diseases and cancer, which could facilitate the application of food derived nutrients in functional foods industry.
Collapse
Affiliation(s)
- Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Leilei Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chunli Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jun Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
24
|
Bhatt H, Ghosh B, Biswas S. Cell-Penetrating Peptide and α-Tocopherol-Conjugated Poly(amidoamine) Dendrimers for Improved Delivery and Anticancer Activity of Loaded Paclitaxel. ACS APPLIED BIO MATERIALS 2020; 3:3157-3169. [DOI: 10.1021/acsabm.0c00179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| |
Collapse
|
25
|
Khan MM, Madni A, Tahir N, Parveen F, Khan S, Jan N, Ali A, Abdurrahim M, Farooq U, Khan MI. Co-Delivery of Curcumin and Cisplatin to Enhance Cytotoxicity of Cisplatin Using Lipid-Chitosan Hybrid Nanoparticles. Int J Nanomedicine 2020; 15:2207-2217. [PMID: 32280215 PMCID: PMC7125308 DOI: 10.2147/ijn.s247893] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/12/2020] [Indexed: 01/09/2023] Open
Abstract
Background Lipid-polymer hybrid nanoparticles (LPHNP) are suitable for co-delivery of hydrophilic and lipophilic drugs. The structural advantages of polymers and biomimetic properties of lipids enable higher encapsulation of drugs and controlled release profile. Lipid-polymer hybrid nanoparticles have been prepared for co-delivery of curcumin and cisplatin for enhanced cytotoxicity against ovarian cancer. Material and Methods Chitosan, cisplatin, curcumin, Lipoid S75 were selected as structural components and ionic gelation method was used for preparation of LPHNPs. Nanoparticles were formed via ionic interaction of positively charged chitosan and negatively charged lipid. Results The optimized nanoparticles were of 225 nm with cationic charge. The encapsulation efficiency was greater than 80% with good drug loading. The drug release profile showed controlled release behavior of both curcumin and cisplatin simultaneously and the absence of burst release. The in vitro therapeutic efficacy and cellular association was evaluated using A2780 ovarian cell lines. To further investigate therapeutic efficacy, we developed 3D spheroids as tumor model to mimic the in vivo conditions. The cytotoxicity and uptake of co-loaded LPHNPs were evaluated on 3D spheroids and results indicated increased chemosensitization and enhanced therapeutic efficacy of co-loaded LPHNPs. Conclusion Lipid-polymer hybrid nanoparticles could be a suitable platform for co-delivery of curcumin and cisplatin for enhanced cytotoxic effect on ovarian cell lines.
Collapse
Affiliation(s)
| | - Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Safiullah Khan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nasrullah Jan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ahsan Ali
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Abdurrahim
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Umar Farooq
- Department of Pharmacy, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
26
|
Gherasim O, Grumezescu AM, Grumezescu V, Iordache F, Vasile BS, Holban AM. Bioactive Surfaces of Polylactide and Silver Nanoparticles for the Prevention of Microbial Contamination. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E768. [PMID: 32046134 PMCID: PMC7040686 DOI: 10.3390/ma13030768] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
Thanks to its peculiar interactions with biological molecules and structures, metallic silver in the form of silver nanoparticles achieved a remarkable comeback as a potential antimicrobial agent. The antimicrobial use of silver nanoparticles is of clinical importance, as several pathogenic microorganisms developed resistance against various conventional drug treatments. Hence, given the extensive efficiency of silver nanoparticles against drug-sensitive and drug-resistant pathogens, their therapeutic implications were demonstrated in multiple medical applications, such as silver-based dressings, silver-coated biomedical devices and silver-containing nanogels. Bacterial strains possess an intrinsic ability to form well-organized microbial communities, capable of developing adaptive mechanisms to environmental aggression and self-protective pathways against antibiotics. The formation of these mono- or poly-microbial colonies, called biofilms, is closely related with the occurrence of infectious processes which result in severe and chronic pathologies. Therefore, substantial efforts were oriented to the development of new protective coatings for biomedical surfaces, capable of sustaining the physiological processes within human-derived normal cells and to disrupt the microbial contamination and colonization stages. Nanostructured materials based on polylactic acid and silver nanoparticles are herein proposed as bioactive coatings able to prevent the formation of microbial biofilms on biomedical relevant surfaces.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (B.S.V.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (B.S.V.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Florin Iordache
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (B.S.V.)
| | - Alina Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania;
| |
Collapse
|
27
|
Ghaffari M, Dehghan G, Baradaran B, Zarebkohan A, Mansoori B, Soleymani J, Ezzati Nazhad Dolatabadi J, Hamblin MR. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf B Biointerfaces 2019; 188:110762. [PMID: 31911391 DOI: 10.1016/j.colsurfb.2019.110762] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/25/2022]
Abstract
Co-delivery of therapeutic agents and small interfering RNA (siRNA) can be achieved by a suitable nanovehicle. In this work, the solubility and bioavailability of curcumin (Cur) were enhanced by entrapment in a polyamidoamine (PAMAM) dendrimer, and a polyplex was formed by grafting Bcl-2 siRNA onto the surface amine groups to produce PAMAM-Cur/Bcl-2 siRNA nanoparticles (NPs). The synthesized polyplex NPs had a particle size of ∼180 nm, and high Cur loading content of ∼82 wt%. Moreover, the PAMAM-Cur/Bcl-2 siRNA NPs showed more effective cellular uptake, and higher inhibition of tumor cell proliferation compared to PAMAM-Cur nanoformulation and free Cur, due to the combined effect of co-delivery of Cur and Bcl-2 siRNA. The newly described PAMAM-Cur/Bcl-2 siRNA polyplex NPs could be a promising co-delivery nanovehicle.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
28
|
Song J, Liu Y, Lin L, Zhao Y, Wang X, Zhong M, Xie T, Luo Y, Li S, Yang R, Li H. Glycyrrhetinic acid modified and pH-sensitive mixed micelles improve the anticancer effect of curcumin in hepatoma carcinoma cells. RSC Adv 2019; 9:40131-40145. [PMID: 35541419 PMCID: PMC9076264 DOI: 10.1039/c9ra07250k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023] Open
Abstract
Curcumin (CUR), a natural polyphenolic compound existing in plants, exhibits anticancer potential in inhibiting the growth of various types of human cancer. However, the poor aqueous solubility and low bioavailability limit its clinical applications. pH-sensitive macromolecule F68-acetal-PCL (FAP) and active targeting macromolecule F68-glycyrrhetinic acid (FGA) were designed to fabricate mixed micelles for efficient delivery of CUR. The thin film hydration method was used to prepare CUR loaded mixed (MIX/CUR) micelles. The drug loading rate (DL) of MIX/CUR micelles was 6.31 ± 0.92%, which remained stable for 15 days at 4 °C. The particle size and zeta potential of the MIX/CUR micelles were 91.06 ± 1.37 nm and -9.79 ± 0.47 mV, respectively. The MIX/CUR micelles exhibited pH sensitivity in a weak acid environment, and showed rapid particle size variation and drug release. In addition, in vitro tests demonstrated that MIX/CUR micelles induced higher cytotoxicity and apoptosis than free CUR, non-pH-sensitive F68-PCL (FBP)/CUR micelles and pH-sensitive FAP/CUR micelles in SMMC7721 and Hepa1-6 cells. Besides, mixed micelles were more effective than FBP and FAP micelles in a cell uptake experiment, which was medicated by a GA receptor. All in all, these results indicated that MIX/CUR micelles could be regarded as an ideal drug administration strategy against hepatoma carcinoma cells.
Collapse
Affiliation(s)
- Jizheng Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ye Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Xiuqing Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ming Zhong
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science Nanning 530022 China
| | - Tanggui Xie
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science Nanning 530022 China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Shaojing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ruocong Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
29
|
Bhatt H, Kiran Rompicharla SV, Ghosh B, Torchilin V, Biswas S. Transferrin/α-tocopherol modified poly(amidoamine) dendrimers for improved tumor targeting and anticancer activity of paclitaxel. Nanomedicine (Lond) 2019; 14:3159-3176. [PMID: 31855118 PMCID: PMC6939222 DOI: 10.2217/nnm-2019-0128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aim: Transferrin anchored, poly(ethylene glycol) (PEG) and α-tocopheryl succinate (α-TOS) conjugated generation 4 dendrimer has been prepared in order to develop a tumor targeted delivery system of a hydrophobic chemotherapeutic agent, paclitaxel (PTX). Materials & methods: The dendrimers were characterized physicochemically for size, ζ and encapsulation ability. The cellular uptake, cytotoxicity potential and apoptosis of prepared nanoconstruct were evaluated in human cervical epithelial cells monolayer and 3D spheroids. Results & conclusion: G4-TOS-PEG-Tf demonstrated increased cellular uptake, cytotoxicity and apoptotic potential of PTX compared with free PTX and G4-TOS-PEG-PTX. G4-TOS-PEG-Tf-PTX inhibited growth of human cervical epithelial cells spheroids significantly. The newly developed dendrimers hold promise as an efficient delivery system for PTX or other hydrophobic chemotherapeutic agents for targeted delivery to tumors.
Collapse
Affiliation(s)
- Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology & Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India,Author for correspondence: Tel.: +91 40 66303630;
| |
Collapse
|
30
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Chitti S, Singireddi S, Santosh Kumar Reddy P, Trivedi P, Bobde Y, Kumar C, Rangan K, Ghosh B, Sekhar KVGC. Design, synthesis and biological evaluation of 2-(3,4-dimethoxyphenyl)-6 (1,2,3,6-tetrahydropyridin-4-yl)imidazo[1,2-a]pyridine analogues as antiproliferative agents. Bioorg Med Chem Lett 2019; 29:2551-2558. [PMID: 31420269 DOI: 10.1016/j.bmcl.2019.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/22/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
Two series of forty five novel 2-(3,4-dimethoxyphenyl)-6-(1,2,3,6-tetrahydropyridin-4-yl) imidazo[1,2-a]pyridine analogues (IPA 1-22, IPS 1-22 and IP-NH) have been designed, synthesized and structures confirmed by 1H NMR, 13C NMR, mass spectrometry. Furthermore, single crystal was developed for IPS-13. All the final derived conjugates were evaluated for their in vitro antiproliferative activity against a panel of diverse cancer cell lines viz., A549 (lung cancer), HeLa (cervical cancer), B16F10 (melanoma) and found to show potent anticancer activity on the tested cell lines. Many of them showed the IC50 values in the range 2.0-20.0 µM. The most active compounds (IPA 5,6,8,9,12,16,17,19 and IPS 7,8,9,22) from IPA and IPS series were screened to determine their cytotoxicity on HEK-293 (human embryonic kidney) normal cell line and were found to be nontoxic to normal human cells. The molecular interactions of the derivatised conjugates were also supported by molecular docking simulations. These derivatives may serve as lead structures for development of novel potential anticancer drug candidates.
Collapse
Affiliation(s)
- Surendar Chitti
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India
| | - SrinivasaRao Singireddi
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India
| | - Pochana Santosh Kumar Reddy
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India
| | - Prakruti Trivedi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India
| | - Yamini Bobde
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India
| | - Chandan Kumar
- Department of Bioinformatics, Pondicherry University, Pondicherry 605014, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India.
| | | |
Collapse
|
32
|
Kumari P, Rompicharla SVK, Bhatt H, Ghosh B, Biswas S. Development of chlorin e6-conjugated poly(ethylene glycol)-poly(d,l-lactide) nanoparticles for photodynamic therapy. Nanomedicine (Lond) 2019; 14:819-834. [DOI: 10.2217/nnm-2018-0255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: In this study, we developed a chlorin e6-conjugated methoxy-poly(ethylene glycol)-poly(d,l-lactide) (mPEG-PLA-Ce6) amphiphilic polymer, which self-assembled to form stable nanoparticles. Materials & methods: The nanoparticles were characterized for particle size, ζ-potential and singlet oxygen (1O2) generation. Cellular internalization and phototoxicity were investigated against monolayer and 3D spheroids of human lung adenocarcinoma cells (A549). Results & conclusion: mPEG-PLA-Ce6 exhibited a size of 149.72 ± 3.51 nm and ζ-potential of -24.82 ± 2.94 mV. The 1O2 generation by mPEG-PLA-Ce6 in water was considerably higher than free chlorin e6. The nanoparticles showed enhanced cellular internalization and phototoxicity in monolayer and 3D spheroids. The developed mPEG-PLA-Ce6 has potential application as a nanocarrier of chlorin e6 for photodynamic therapy of solid tumors.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| |
Collapse
|
33
|
Bhatt H, Kiran Rompicharla SV, Ghosh B, Biswas S. α-Tocopherol Succinate-Anchored PEGylated Poly(amidoamine) Dendrimer for the Delivery of Paclitaxel: Assessment of in Vitro and in Vivo Therapeutic Efficacy. Mol Pharm 2019; 16:1541-1554. [DOI: 10.1021/acs.molpharmaceut.8b01232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| |
Collapse
|
34
|
Zhang Q, Suntsova L, Chistyachenko YS, Evseenko V, Khvostov MV, Polyakov NE, Dushkin AV, Su W. Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent. Int J Biol Macromol 2019; 128:158-166. [PMID: 30664966 DOI: 10.1016/j.ijbiomac.2019.01.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/11/2023]
Abstract
Pharmaceutical solid dispersions (SD) of curcumin (Cur) with macromolecule polysaccharide arabinogalactan (AG) from wood of Larix sibirica were prepared by mechanical ball milling. The physical properties of the dispersed curcumin mixture in solid state were characterized by scanning electron microscope, differential scanning calorimetry and powder X-ray diffraction studies. These methods showed a strong decrease in the degree of crystallinity of Cur and its transformation to amorphization state, accompanied by the formation of the guest-host type complexes. The behavior of the samples in solutions was characterized by reverse phase HPLC, 1H NMR spectroscopy, UV-Visible spectroscopy and gel permeation chromatography (GPC). Mechanochemically prepared complexes demonstrated the increased solubility of Cur up to ~10.5 times in contrast to pure curcumin. The rapid storage test showed high chemical stability of Cur, which depended on mass relations of Cur-AG. Besides, improved membrane permeability of Cur-AG SD was tested by parallel artificial membrane permeability assay. Pharmacokinetic study of Cur-AG SD formulation in rat demonstrated a significant~8-fold enhancement of bioavailability in comparison to pure curcumin. In MTT tests, Cur-AG SD showed moderate cytotoxicity against human glioblastoma cells and immortalized human fibroblasts. Therefore, Cur-AG solid dispersion was a more promising and efficacious formulation for application in oral drug delivery.
Collapse
Affiliation(s)
- Qihong Zhang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lubov Suntsova
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | | | - Veronika Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - Mikhail V Khvostov
- Institute of Organic Chemistry, Novosibirsk, Russia; Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | - Alexandr V Dushkin
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|