1
|
Yu MJ, Feng R, Long S, Tao H, Zhang B. Stabilizing emulsions by ultrasound-treated pea protein isolate - tannic acid complexes: Impact of ultrasonic power and concentration of complexes on emulsion characteristics. Food Chem 2025; 463:141266. [PMID: 39288458 DOI: 10.1016/j.foodchem.2024.141266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This work aimed to investigate the feasibility of stabilizing oil-in-water (O/W) emulsions by ultrasound-treated pea protein isolate-tannic acid (UPPI-TA) complex. The stability and microstructure of the O/W emulsions were evaluated at different ultrasonic powers (0-1000 W) and UPPI-TA complex concentrations (0.25-2.0 wt%). The contact angle (θ) of UPPI-TA was 59.6°, which was suitable for stabilizing O/W emulsions. At an ultrasonic power of 800 W, the droplet size and creaming index (CI) of emulsions decreased, and the apparent viscosity and interfacial protein adsorption content increased with increasing UPPI-TA concentration. In particular, emulsions with 1.5 % UPPI-TA showed the lowest CI, the highest interfacial protein adsorption content and viscoelasticity, as well as the best storage and thermal stability. These results showed that the suitable modifications of ultrasonic emulsification power and particle concentrations were a new potential approach to stabilize the O/W emulsions by ultrasound-treated pea protein isolated-tannic acid complex.
Collapse
Affiliation(s)
- Meng-Jie Yu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Shen Long
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
2
|
Hei X, Liu Z, Li S, Wu C, Jiao B, Hu H, Ma X, Zhu J, Adhikari B, Wang Q, Shi A. Freeze-thaw stability of Pickering emulsion stabilized by modified soy protein particles and its application in plant-based ice cream. Int J Biol Macromol 2024; 257:128183. [PMID: 37977455 DOI: 10.1016/j.ijbiomac.2023.128183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Pickering emulsions are of great interest to the food industry and their freeze-thaw stability important when used in frozen foods. Particles of soybean isolate (SPI) were heat treated and then crosslinked with transglutaminase (TG) enzyme to produce Pickering emulsions. The protein particles produced using unheated and uncrosslinked SPI (NSPI) was used as the benchmark. The mean particle size, absolute zeta potential, and surface hydrophobicity of protein particles produced using heat treatment and TG crosslinking (at 40 U/g) SPI (HSPI-TG-40) were the highest and substantially higher than those produced using NSPI. The thermal treatment of protein particles followed by crosslinking with TG enzyme improved the freeze-thaw stability of Pickering emulsions stabilized by them. The Pickering emulsions produced using HSPI-TG-40 had the lowest temperature for ice crystal formation and they had better freeze-thaw stability. The plant-based ice cream prepared by HSPI-TG-40 particle-stabilized Pickering emulsions had suitable texture and freeze-thaw stability compared to the ice cream produced using NSPI. The Pickering particles produced using heat treatment of SPI followed by crosslinking with TG (at 40 U/g) produced the most freeze-thaw stable Pickering emulsions. These Pickering particles and Pickering emulsions could be used in frozen foods such as ice cream.
Collapse
Affiliation(s)
- Xue Hei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shanshan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chao Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, 3083, VIC, Australia
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
3
|
Gomaa MAE, Allam MG, Mokhtar E, Ayad EHE, Darwish SM, Darwish AMG. Nano casein-pectin complex: exploring physicochemical, organoleptic properties, and LAB viability in skimmed milk and low-fat yoghurt. Front Nutr 2024; 10:1288202. [PMID: 38268670 PMCID: PMC10806235 DOI: 10.3389/fnut.2023.1288202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein complexes with a nutritional value, heat stability, and gelling properties with no negative impact on culture viability have promising application prospects in the fermentation industry. The aim of the study was to investigate the possibility of applying physical modification seeking high-protein-fortified yoghurt production using the nano casein-pectin NCP complex as an active colloidal system with enhanced structural and thermal properties and monitor the quality properties of the physicochemical, heat stability, rheological, starter culture viability and sensory evaluation of fortified products comparing with the plain control throughout the cold storage. High-energy ball milling (HEBM) technique was used to produce nanoparticles of casein powder and smaller particles of pectin individually, and particle size and zeta potential was assessed. Deferent Nano casein-pectin (NCP) complex formulations were prepared, their physicochemical properties were assessed including protein quality via Amino Acid Analyzer (AAA), viscosity, thermogravimetric analysis (TGA), and then used in fortification of skimmed milk and low-fat yoghurt to monitor the fortification effects. The particle sizes showed to be ≈166 nm and 602.6 nm for nano-casein and pectin, respectively. Milk fortification with the NCP complex has significantly increased the nutritional value represented in increased protein content (7.19 g/100 g in NCP5); Ca, P, and S content (2,193.11, 481.21, and 313.77 ppm); and amino acid content with first limiting amino acids; histidine (0.89 mg/g), methionine (0.89 mg/g), and low content of hydrophobic amino acids (HAAs) may cause aggregation. NPC fortification enhanced physicochemical properties announced in enhanced viscosity (62. mP.s in NCP5) and heat stability (up to 200°C) compared with control skimmed milk (SM). NCP yoghurt fortification significantly increased protein content to 11 mg/100 g in T5, enhanced viscosity to 48.44 mP.s in T3, decreased syneresis to 16% in T5, and enhanced LAB viability which was translated in preferable sensorial properties. Applying fortification with nanoparticles of the casein-pectin (NCP) complex balanced the amino acid content and improved physicochemical, rheological, nutritional, and sensorial properties and LAB viability, which can be recommended further in functional food applications.
Collapse
Affiliation(s)
- Mohamed A. E. Gomaa
- Food Science Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Marwa G. Allam
- Food Science Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Esraa Mokhtar
- Food Science Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Eman H. E. Ayad
- Food Science Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Saeid M. Darwish
- Food Science Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Amira M. G. Darwish
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
4
|
Wang S, Li Y, Yan G, Yuan D, Ji B, Zhou F, Li Y, Zhang L. Thickening mechanism of recombined dairy cream stored at 4 °C: Changes in the composition and structure of milk protein under different sterilization intensities. Int J Biol Macromol 2023; 227:903-914. [PMID: 36549627 DOI: 10.1016/j.ijbiomac.2022.12.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
This work elucidates the mechanism involved in the effect of varying sterilization intensities on RDC thickening via comparative analysis of the changes in the composition and structure of RDC interfacial protein after storage at 4 °C and at 25 °C. The results showed that pasteurized RDCs (75 °C for 16 s, 90 °C for 5 min) and high-temperature sterilized RDCs (105 °C for 3 min, 115 °C for 7 min and 121 °C for 7 min) did not thicken during storage at 25 °C, and had lower viscosities and higher Ca2+ concentrations than those stored at 4 °C. Whey protein (WP) aggregates were found to have been adsorbed at the interface of high-temperature treated RDCs stored at 4 °C, leading to the aggregation of fat globules and, consequently, reversible thickening. However, high-temperature sterilized RDCs underwent into irreversible thickening at 10 d, 7 d and 3 d. This phenomenon was attributed to the large amount of heat-induced whey protein and κ-casein complex that was absorbed on the oil-water interface, with Ca2+ bonded to form bridging flocculation, which altered the secondary structure of the interfacial protein to one with increased β-sheet content and decreased random coil content.
Collapse
Affiliation(s)
- Shiran Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guosen Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dongdong Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Liebing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Xu H, Yang L, Jin J, Zhang J, Xie P, Chen Y, Shi L, Wei W, Jin Q, Wang X. Elucidation on the destabilization mechanism of whipping creams during static storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Ho TM, Zou Z, Bansal N. Camel milk: A review of its nutritional value, heat stability, and potential food products. Food Res Int 2022; 153:110870. [PMID: 35227464 DOI: 10.1016/j.foodres.2021.110870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 02/02/2023]
|
7
|
Rheological and textural properties of emulsion spreads based on milk fat and inulin with the addition of probiotic bacteria. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Ultrasound-modified interfacial properties and crystallization behavior of aerated emulsions fabricated with pH-shifting treated pea protein. Food Chem 2021; 367:130536. [PMID: 34371279 DOI: 10.1016/j.foodchem.2021.130536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
The interfacial properties of pea protein isolate (NPP) were modified by pH12-shifting (BPP) and ultrasound treatment as a substitute for skimmed milk powder (SMP) in ice cream. The physicochemical properties and fat crystallization in emulsions before and after whipping were analyzed. Compared with SMP, the BPP emulsion displayed superior stability with small particle size and high viscosity. Fat clusters were observed in both SMP and BPP emulsions, which may promote the puncture and protrusion of fat crystals within droplets and lead to partial coalescence to allow air bubble entrapment. Aeration activity of BPP in cream was 1.5-fold that of NPP. Although the overrun value was smaller than SMP cream, the BPP cream retained the stable shape and had a slow melting rate due to its interactive dimensional network of fat. Ultrasound treatment was found to promote fat crystallization of emulsions, leading to the improved stability of final products.
Collapse
|