1
|
Amar-Lewis E, Cohen L, Chintakunta R, Benafsha C, Lavi Y, Goldbart R, Traitel T, Gheber LA, Kost J. Elucidating siRNA Cellular Delivery Mechanism Mediated by Quaternized Starch Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405524. [PMID: 39359045 DOI: 10.1002/smll.202405524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Starch-based nanoparticles are highly utilized in the realm of drug delivery taking advantage of their biocompatibility and biodegradability. Studies have utilized Quaternized starch (Q-starch) for small interfering RNA (siRNA) delivery, in which quaternary amines enable interaction with negatively charged siRNA, resulting in self-assembly complexation. Although reports present numerous applications, the demonstrated efficacy is nonetheless limited due to undiscovered cellular mechanistic delivery. In this study, a deep dive into Q-starch/siRNA complexes' cellular mechanism and kinetics at the cellular level is revealed using single-particle tracking and cell population level using imaging flow cytometry. Uptake studies depict the efficient cellular internalization via endocytosis while a significant fraction of complexes' intracellular fate is lysosome. Utilizing single-particle tracking, it is found that an average of 15% of cellular detected complexes escape the endosome which holds the potential for the integration in the cytoplasmatic gene silencing mechanism. Additional experimental manipulations (overcoming endosomal escape) demonstrate that the complex's disassembly is the rate-limiting step, correlating Q-starch's structure-function properties as siRNA carrier. Structure-function properties accentuating the high affinity of the interaction between Q-starch's quaternary groups and siRNA's phosphate groups that results in low release efficiency. However, low-frequency ultrasound (20 kHz) application may have induced siRNA release resulting in faster gene silencing kinetics.
Collapse
Affiliation(s)
- Eliz Amar-Lewis
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Limor Cohen
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ramesh Chintakunta
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Chen Benafsha
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Yael Lavi
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Riki Goldbart
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Tamar Traitel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Levi A Gheber
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Joseph Kost
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
2
|
Rajendran AP, Ogundana O, Morales LC, Meenakshi Sundaram DN, Kucharski C, Kc R, Uludağ H. Transfection Efficacy and Cellular Uptake of Lipid-Modified Polyethyleneimine Derivatives for Anionic Nanoparticles as Gene Delivery Vectors. ACS APPLIED BIO MATERIALS 2023; 6:1105-1121. [PMID: 36853230 DOI: 10.1021/acsabm.2c00978] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cationic polyethylenimine (PEI)-based nonviral gene carriers have been desirable to overcome the limitations of viral vectors in gene therapy. A range of PEI derivatives were designed, synthesized, and evaluated for nonviral delivery applications of plasmid DNA (pDNA). Linolenic acid, lauric acid, and oleic acid were covalently conjugated with low-molecular-weight PEI (Mw ∼ 1200 Da) via two different linkers, gallic acid (GA) and p-hydroxybenzoic acid (PHPA), that allows a differential loading of lipids per modified amine (3 vs 1, respectively). 1H NMR spectrum confirmed the expected structure of the conjugates as well as the level of lipid substitution. SYBR Green binding assay performed to investigate the 50% binding concentration (BC50) of lipophilic polymers to pDNA revealed increased BC50 with an increased level of lipid substitution. The particle analysis determined that GA- and PHPA-modified lipopolymers gave pDNA complexes with ∼300 and ∼100 nm in size, respectively. At the polymer/pDNA ratio of 5.0, the ζ-potentials of the complexes were negative (-6.55 to -10.6 mV) unlike the complexes with the native PEI (+11.2 mV). The transfection experiments indicated that the prepared lipopolymers showed higher transfection in attachment-dependent cells than in suspension cells based on the expression of the reporter green fluorescent protein (GFP) gene. When loaded with Cy3-labeled pDNA, the lipopolymers exhibited effective cellular uptake in attachment-dependent cells while the cellular uptake was limited in suspension cells. These results demonstrate the potential of lipid-conjugated PEI via GA and PHPA linkers, which are promising for the modification of anchorage-dependent cells.
Collapse
Affiliation(s)
- Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Oluwanifemi Ogundana
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Luis Carlos Morales
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | | | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
3
|
Liu L, Yang Z, Liu C, Wang M, Chen X. Preparation of PEI-modified nanoparticles by dopamine self-polymerization for efficient DNA delivery. Biotechnol Appl Biochem 2022; 70:824-834. [PMID: 36070708 DOI: 10.1002/bab.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/27/2022] [Indexed: 11/09/2022]
Abstract
Achieving efficient and safe gene delivery is great of significance to promote the development of gene therapy. In this work, a polydopamine (PDA) layer was coated on the surface of Fe3 O4 nanoparticles (NPs) by dopamine (DA) self-polymerization, and then magnetic Fe3 O4 NPs were prepared by the Michael addition between amino groups in polyethyleneimine (PEI) and PDA. The prepared Fe3 O4 NPs (named Fe3 O4 @PDA@PEI) were characterized by FTIR, atomic force microscopy (AFM) and scanning electron microscope (SEM). As an efficient and safe gene carrier, the potential of Fe3 O4 @PDA@PEI was evaluated by agarose gel electrophoresis, MTT assay, fluorescence microscopy, flow cytometry. The results shows that the Fe3 O4 @PDA@PEI NPs is stable hydrophilic nanoparticles with a particle size of 50-150 nm. It can efficiently condense DNA at low N/P ratios and protect it from nuclease degradation. In addition, the Fe3 O4 @PDA@PEI NPs has higher safety than PEI. Further, the Fe3 O4 @PDA@PEI/DNA polyplexes could be effectively absorbed by cells and successfully transfected, and exhibit higher cellular uptake and gene transfection efficiency than PEI/DNA polyplexes. The findings indicate that the Fe3 O4 @PDA@PEI NPs has the potential to be developed into a novel gene vector. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liang Liu
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhaojun Yang
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chaobing Liu
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Mengying Wang
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xin Chen
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
4
|
Liu L, Yang Z, Liu C, Wang M, Chen Y. Effect of molecular weight of polysaccharide on efficient plasmid
DNA
delivery by
polyethylenimine‐polysaccharide‐Fe
(
III
) complexes. J Appl Polym Sci 2022. [DOI: 10.1002/app.53047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liang Liu
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Zhaojun Yang
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Chaobing Liu
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Mengying Wang
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Yiran Chen
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| |
Collapse
|
5
|
Lin M, Lin A, Huang S, Liu T, Ke F, Qiu D, Lin X, Luo D. Development of a novel vector for
siRNA
Delivery based on Arginine Modified Polyvinylamine. POLYM INT 2022. [DOI: 10.1002/pi.6386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mei Lin
- Department of Medicinal Chemistry, School of Pharmacy Fujian Medical University Fuzhou China
| | - Aizhu Lin
- Key Laboratory of Technical Evaluation of Fertility Regulation of Non Human Primate National Health Commission Fuzhou 350013 Fujian China
- Fujian Obstetrics and Gynecology Hospital Fuzhou 350012 Fujian China
| | - Sheng Huang
- Department of Medicinal Chemistry, School of Pharmacy Fujian Medical University Fuzhou China
| | - Tianhui Liu
- Department of Medicinal Chemistry, School of Pharmacy Fujian Medical University Fuzhou China
| | - Fang Ke
- Department of Medicinal Chemistry, School of Pharmacy Fujian Medical University Fuzhou China
| | - Deshun Qiu
- Department of Medicinal Chemistry, School of Pharmacy Fujian Medical University Fuzhou China
| | - Xuefeng Lin
- Department of Medicinal Chemistry, School of Pharmacy Fujian Medical University Fuzhou China
| | - Daoshu Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences Fujian Medical University Fuzhou China
| |
Collapse
|
6
|
Hooshmand SE, Sabet MJ, Hasanzadeh A, Mousavi SMK, Moghadam NH, Hooshmand SA, Rabiee N, Liu Y, Hamblin MR, Karimi M. Histidine‐enhanced gene delivery systems: The state of the art. J Gene Med 2022; 24:e3415. [DOI: 10.1002/jgm.3415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seyyed Emad Hooshmand
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Makkieh Jahanpeimay Sabet
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyede Mahtab Kamrani Mousavi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Niloofar Haeri Moghadam
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyed Aghil Hooshmand
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics University of Tehran Tehran Iran
| | - Navid Rabiee
- Department of Physics Sharif University of Technology Tehran Iran
- School of Engineering Macquarie University Sydney New South Wales Australia
| | - Yong Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu China
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science University of Johannesburg South Africa
| | - Mahdi Karimi
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences Tehran Iran
- Research Center for Science and Technology in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
7
|
Liu L, Chen Y, Liu C, Yan Y, Yang Z, Chen X, Liu G. Effect of Extracellular Matrix Coating on Cancer Cell Membrane-Encapsulated Polyethyleneimine/DNA Complexes for Efficient and Targeted DNA Delivery In Vitro. Mol Pharm 2021; 18:2803-2822. [PMID: 34086466 DOI: 10.1021/acs.molpharmaceut.1c00359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polyethyleneimine (PEI) has a good spongy proton effect and is an excellent nonviral gene vector, but its high charge density leads to the instability and toxicity of PEI/DNA complexes. Cell membrane (CM) capsules provide a universal and natural solution for this problem. Here, CM-coated PEI/DNA capsules (CPDcs) were prepared through extrusion, and the extracellular matrix was coated on CPDcs (ECM-CPDcs) for improved targeting. The results showed that compared with PEI/DNA complexes, CPDcs had core-shell structures (PEI/DNA complexes were coated by a 6-10 nm layer), lower cytotoxicity, and obvious homologous targeting. The internalization and transfection efficiency of 293T-CM-coated PEI70k/DNA capsules (293T-CP70Dcs) were 91.8 and 74.5%, respectively, which were higher than those of PEI70k/DNA complexes. Then, the internalization and transfection efficiency of 293T-CP70Dcs were further improved by ECM coating, which were 94.7 and 78.9%, respectively. Then, the internalization and transfection efficiency of 293T-CP70Dcs were further improved by ECM coating, which were 94.7 and 78.9%, respectively. Moreover, the homologous targeting of various CPDcs was improved by ECM coating, and other CPDcs also showed similar effects as 293T-CP70Dcs after ECM coating. These findings suggest that tumor-targeted CPDcs may have considerable advantages in gene delivery.
Collapse
Affiliation(s)
- Liang Liu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiran Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chaobing Liu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yujian Yan
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhaojun Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Gang Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
8
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
9
|
|
10
|
Jain P, Patel K, Jangid AK, Guleria A, Patel S, Pooja D, Kulhari H. Modulating the Delivery of 5-Fluorouracil to Human Colon Cancer Cells Using Multifunctional Arginine-Coated Manganese Oxide Nanocuboids with MRI Properties. ACS APPLIED BIO MATERIALS 2020; 3:6852-6864. [PMID: 35019347 DOI: 10.1021/acsabm.0c00780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most prescribed drugs and the major component of chemotherapy for the treatment of colorectal cancer. In this study, we have designed arginine-functionalized manganese oxide nanocuboids (Arg@MNCs) for the effective delivery of 5-FU to colon cancer cells. Arginine was used as multifunctional agent to provide stability to MNCs, achieve high drug loading, control the release of loaded drug, and improve delivery to cancer cells. The synthesized Arg@MNCs were characterized by DLS, TEM, XRD, FTIR, XPS, TGA, and VSM analysis. The structural and morphological analysis by TEM showed cuboid-shaped MNCs with average particle size ∼15 nm. Biodegradation studies indicated that the Arg@MNCs were degraded at endolyosomal pH in 24 h while remaining stable at physiological pH. Hemolytic toxicity studies revealed the safety and nontoxic nature of the prepared MNCs. 5-FU-loaded Arg@MNCs showed significant control over the release of 5-FU, decrease in the hemolytic toxicity of loaded 5-FU but higher in vitro anticancer activity against HCT 116 and SW480 human colon cancer cells. Importantly, both the bare MNCs and Arg@MNCs showed excellent T1 and T2MR relaxivity under 3.0 T MRI scanner. Thus, the nanostructures developed in this study, i.e., 5-FU-Arg@MNCs could overcome the issues of both MNCs (stability) and 5-FU (low drug loading and nonspecificity) and may be used as a multifunctional theranostic nanocarrier for colon cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Anupam Guleria
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | | | - Deep Pooja
- The Centre for Advanced Materials & Industrial Chemistry, Applied Sciences, RMIT University, 124 La Trobe Street, Melbourne 3000, Australia
| | | |
Collapse
|
11
|
Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome. NANOMATERIALS 2020; 10:nano10061183. [PMID: 32560474 PMCID: PMC7353451 DOI: 10.3390/nano10061183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/14/2023]
Abstract
Oncolytic adenoviruses are a therapeutic alternative to treat cancer based on their ability to replicate selectively in tumor cells. However, their use is limited mainly by the neutralizing antibody (Nab) immune response that prevents repeated dosing. An alternative to facilitate the DNA access to the tumor even in the presence of anti-viral Nabs could be gold nanoparticles able to transfer DNA molecules. However, the ability of these nanoparticles to carry large DNA molecules, such as an oncolytic adenovirus genome, has not been studied. In this work, gold nanoparticles were functionalized with different amounts of polyethylenimine to transfer in a safe and efficient manner a large oncolytic virus genome. Their transfer efficacy and final effect of the oncolytic virus in cancer cells are studied. For each synthesized nanoparticle, (a) DNA loading capacity, (b) complex size, (c) DNA protection ability, (d) transfection efficacy and (e) cytotoxic effect were studied. We observed that small gold nanoparticles (70–80 nm in diameter) protected DNA against nucleases and were able to transfect the ICOVIR-15 oncolytic virus genome encoded in pLR1 plasmid. In the present work, efficient transgene RNA expression, luciferase activity and viral cytopathic effect on cancer cells are reported. These results suggest gold nanoparticles to be an efficient and safe vector for oncolytic adenovirus genome transfer.
Collapse
|
12
|
Labelle M, Ispas‐Szabo P, Mateescu MA. Structure‐Functions Relationship of Modified Starches for Pharmaceutical and Biomedical Applications. STARCH-STARKE 2020. [DOI: 10.1002/star.202000002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marc‐André Labelle
- Department of Chemistry, Research Chair on Enteric Dysfunctions ‘Allerdys’, CERMO‐FC CenterUniversité du Québec à Montréal C.P. 8888 Montréal QC H3C 3P8 Canada
| | - Pompilia Ispas‐Szabo
- Department of Chemistry, Research Chair on Enteric Dysfunctions ‘Allerdys’, CERMO‐FC CenterUniversité du Québec à Montréal C.P. 8888 Montréal QC H3C 3P8 Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Research Chair on Enteric Dysfunctions ‘Allerdys’, CERMO‐FC CenterUniversité du Québec à Montréal C.P. 8888 Montréal QC H3C 3P8 Canada
| |
Collapse
|
13
|
Uğurlu Ö, Barlas FB, Evran S, Timur S. The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector. Plasmid 2020; 110:102513. [PMID: 32502501 DOI: 10.1016/j.plasmid.2020.102513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Non-viral gene delivery systems have great potential for safe and efficient gene therapy, while inefficient cellular and nuclear uptake remain as the major hurdles. Novel approaches are needed to enhance the transfection efficiency of non-viral vectors. In accordance with this need, the objective of this study was to construct a non-viral vector that could achieve gene delivery without using additional lipid-based transfection agent. We aimed to impart self-delivery property to a non-viral vector by using the cell and nucleus penetrating properties of YopM proteins from the three Yersinia spp. (Y. pestis, Y. enterocolotica and Y. pseudotuberculosis). Plasmid DNA (pDNA) encoding green fluorescent protein (GFP) was labeled with quantum dots (QDs) via peptide-nucleic acid (PNA) recognition site. Recombinant YopM protein was then attached to the conjugate via a second PNA recognition site. The YopM ̶ QDs ̶ pDNA conjugate was transfected into HeLa cells without using additional transfection reagent. All three conjugates produced GFP fluorescence, indicating that the plasmid was successfully delivered to the nucleus. As control, naked pDNA was transfected into the cells by using a commercial transfection reagent. The Y. pseudotuberculosis YopM-functionalized conjugate achieved the highest GFP expression, compared to other two YopM proteins and the transfection reagent. To the best of our knowledge, YopM protein was used for the first time in a non-viral gene delivery vector.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Fırat Barış Barlas
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey.
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
14
|
Integration of Polylactide into Polyethylenimine Facilitates the Safe and Effective Intracellular siRNA Delivery. Polymers (Basel) 2020; 12:polym12020445. [PMID: 32074943 PMCID: PMC7077636 DOI: 10.3390/polym12020445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Polyethylenimine (PEI) is a gold standard polymer with excellent transfection efficacy, yet its severe toxicity and nondegradability hinders its therapeutic application as a gene delivery vector. To tackle this problem, herein we incorporated the biodegradable polylactide (PLA) into the branched PEI by synthesizing a PEI-PLA copolymer via a facile synthetic route. PLA modification significantly improved the cytocompatibility of PEI, PEI-PLA copolymer showed much higher cell viability than PEI as verified in three different human cancer cell lines (HCT116, HepG2 and SKOV3). Interestingly, the PEI-PLA copolymer could effectively bind siRNA targeting PKM2, and the obtained polyplex displayed much higher stability in serum than naked siRNA as determined by agarose gel electrophoresis. Moreover, cellular uptake study demonstrated that PEI-PLA could efficiently deliver the Cy5-labled siRNA into the three tested cancer cell lines, and the transfection efficiency is equivalent to the commercial Lipofectamine® 2000. Finally, it is noteworthy that the polyplex is comparable to Lipo2000 in down-regulating the expression of PKM2 at both mRNA and protein level as measured by q-PCR and western blotting, respectively. Overall, the PEI-PLA copolymer developed in this study has the potential to be developed as a versatile carrier for safe and effective delivery of other nucleic acid-based agents.
Collapse
|
15
|
Riera R, Feiner-Gracia N, Fornaguera C, Cascante A, Borrós S, Albertazzi L. Tracking the DNA complexation state of pBAE polyplexes in cells with super resolution microscopy. NANOSCALE 2019; 11:17869-17877. [PMID: 31552987 DOI: 10.1039/c9nr02858g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The future of gene therapy relies on the development of efficient and safe delivery vectors. Poly(β-amino ester)s are promising cationic polymers capable of condensing oligonucleotides into nanoparticles - polyplexes - and deliver them into the cell nucleus, where the gene material would be expressed. The complexation state during the crossing of biological barriers is crucial: polymers should tightly complex DNA before internalization and then release to allow free DNA to reach the nucleus. However, measuring the complexation state in cells is challenging due to the nanometric size of polyplexes and the difficulties to study the two components (polymer and DNA) independently. Here we propose a method to visualize and quantify the two components of a polyplex inside cells, with nanometre scale resolution, using two-colour direct stochastic reconstruction super-resolution microscopy (dSTORM). With our approach, we tracked the complexation state of pBAE polyplexes from cell binding to DNA release and nuclear entry revealing time evolution and the final fate of DNA and pBAE polymers in mammalian cells.
Collapse
Affiliation(s)
- Roger Riera
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Safe and efficient gene delivery based on rice bran polysaccharide. Int J Biol Macromol 2019; 137:1041-1049. [DOI: 10.1016/j.ijbiomac.2019.07.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
|
17
|
Zhan YR, Yu QY, Zhang J, Liu YH, Xiao YP, Zhang JH, He X, Yu XQ. Glutathione modified low molecular weight PEI for highly improved gene transfection ability and biocompatibility. NEW J CHEM 2019. [DOI: 10.1039/c9nj02396h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A versatile oligopeptide, glutathione, was introduced to construct novel cationic gene vectors with further excellent transfection efficiency and serum tolerance.
Collapse
Affiliation(s)
- Yu-Rong Zhan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xi He
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|