1
|
Dubashynskaya NV, Petrova VA, Sgibnev AV, Elokhovskiy VY, Cherkasova YI, Skorik YA. Carrageenan/Chitin Nanowhiskers Cryogels for Vaginal Delivery of Metronidazole. Polymers (Basel) 2023; 15:polym15102362. [PMID: 37242937 DOI: 10.3390/polym15102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The development of polymeric carriers based on partially deacetylated chitin nanowhiskers (CNWs) and anionic sulfated polysaccharides is an attractive strategy for improved vaginal delivery with modified drug release profiles. This study focuses on the development of metronidazole (MET)-containing cryogels based on carrageenan (CRG) and CNWs. The desired cryogels were obtained by electrostatic interactions between the amino groups of CNWs and the sulfate groups of CRG and by the formation of additional hydrogen bonds, as well as by entanglement of carrageenan macrochains. It was shown that the introduction of 5% CNWs significantly increased the strength of the initial hydrogel and ensured the formation of a homogeneous cryogel structure, resulting in sustained MET release within 24 h. At the same time, when the CNW content was increased to 10%, the system collapsed with the formation of discrete cryogels, demonstrating MET release within 12 h. The mechanism of prolonged drug release was mediated by polymer swelling and chain relaxation in the polymer matrix and correlated well with the Korsmeyer-Peppas and Peppas-Sahlin models. In vitro tests showed that the developed cryogels had a prolonged (24 h) antiprotozoal effect against Trichomonas, including MET-resistant strains. Thus, the new cryogels with MET may be promising dosage forms for the treatment of vaginal infections.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia
| | - Valentina A Petrova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia
| | - Andrey V Sgibnev
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Pionerskaya st. 11, Orenburg 460000, Russia
| | - Vladimir Y Elokhovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia
| | - Yuliya I Cherkasova
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Pionerskaya st. 11, Orenburg 460000, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia
| |
Collapse
|
2
|
Dubashynskaya NV, Petrova VA, Romanov DP, Skorik YA. pH-Sensitive Drug Delivery System Based on Chitin Nanowhiskers-Sodium Alginate Polyelectrolyte Complex. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175860. [PMID: 36079241 PMCID: PMC9456586 DOI: 10.3390/ma15175860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 05/31/2023]
Abstract
Polyelectrolyte complexes (PECs), based on partially deacetylated chitin nanowhiskers (CNWs) and anionic polysaccharides, are characterized by their variability of properties (particle size, ζ-potential, and pH-sensitivity) depending on the preparation conditions, thereby allowing the development of polymeric nanoplatforms with a sustained release profile for active pharmaceutical substances. This study is focused on the development of hydrogels based on PECs of CNWs and sodium alginate (ALG) for potential vaginal administration that provide controlled pH-dependent antibiotic release in an acidic vaginal environment, as well as prolonged pharmacological action due to both the sustained drug release profile and the mucoadhesive properties of the polysaccharides. The desired hydrogels were formed as a result of both electrostatic interactions between CNWs and ALG (PEC formation), and the subsequent molecular entanglement of ALG chains, and the formation of additional hydrogen bonds. Metronidazole (MET) delivery systems with the desired properties were obtained at pH 5.5 and an CNW:ALG ratio of 1:2. The MET-CNW-ALG microparticles in the hydrogel composition had an apparent hydrodynamic diameter of approximately 1.7 µm and a ζ-potential of -43 mV. In vitro release studies showed a prolonged pH-sensitive drug release from the designed hydrogels; 37 and 67% of MET were released within 24 h at pH 7.4 and pH 4.5, respectively. The introduction of CNWs into the MET-ALG system not only prolonged the drug release, but also increased the mucoadhesive properties by about 1.3 times. Thus, novel CNW-ALG hydrogels are promising carriers for pH sensitive drug delivery carriers.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia
| | - Valentina A. Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia
| | - Dmitry P. Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, 199034 St. Petersburg, Russia
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia
| |
Collapse
|
3
|
Barbara M, Margani V, Covelli E, Filippi C, Volpini L, El-Borady OM, El-Kemary M, Elzayat S, Elfarargy HH. The Use of Nanoparticles in Otoprotection. Front Neurol 2022; 13:912647. [PMID: 35968304 PMCID: PMC9364836 DOI: 10.3389/fneur.2022.912647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
The inner ear can be insulted by various noxious stimuli, including drugs (cisplatin and aminoglycosides) and over-acoustic stimulation. These stimuli damage the hair cells giving rise to progressive hearing loss. Systemic drugs have attempted protection from ototoxicity. Most of these drugs poorly reach the inner ear with consequent ineffective action on hearing. The reason for these failures resides in the poor inner ear blood supply, the presence of the blood-labyrinthine barrier, and the low permeability of the round window membrane (RWM). This article presents a review of the use of nanoparticles (NPs) in otoprotection. NPs were recently used in many fields of medicine because of their ability to deliver drugs to the target organs or cells. The studies included in the review regarded the biocompatibility of the used NPs by in vitro and in vivo experiments. In most studies, NPs proved safe without a significant decrease in cell viability or signs of ototoxicity. Many nano-techniques were used to improve the drugs' kinetics and efficiency. These techniques included encapsulation, polymerization, surface functionalization, and enhanced drug release. In such a way, it improved drug transmission through the RWM with increased and prolonged intra-cochlear drug concentrations. In all studies, the fabricated drug-NPs effectively preserved the hair cells and the functioning hearing from exposure to different ototoxic stimuli, simulating the actual clinical circumstances. Most of these studies regarded cisplatin ototoxicity due to the wide use of this drug in clinical oncology. Dexamethasone (DEX) and antioxidants represent the most used drugs in most studies. These drugs effectively prevented apoptosis and reactive oxygen species (ROS) production caused by ototoxic stimuli. These various successful experiments confirmed the biocompatibility of different NPs and made it successfully to human clinical trials.
Collapse
Affiliation(s)
- Maurizio Barbara
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Valerio Margani
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Edoardo Covelli
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Chiara Filippi
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Luigi Volpini
- Otolaryngology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Ola M. El-Borady
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Saad Elzayat
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Haitham H. Elfarargy
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
- *Correspondence: Haitham H. Elfarargy ;
| |
Collapse
|
4
|
Li L, Luo J, Lin X, Tan J, Li P. Nanomaterials for Inner Ear Diseases: Challenges, Limitations and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3780. [PMID: 35683076 PMCID: PMC9181474 DOI: 10.3390/ma15113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/22/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023]
Abstract
The inner ear is located deep in the temporal bone and has a complex anatomy. It is difficult to observe and obtain pathological tissues directly. Therefore, the diagnosis and treatment of inner ear diseases have always been a major clinical problem. The onset of inner ear disease can be accompanied by symptoms such as hearing loss, dizziness and tinnitus, which seriously affect people's lives. Nanoparticles have the characteristics of small size, high bioavailability and strong plasticity. With the development of related research on nanoparticles in inner ear diseases, nanoparticles have gradually become a research hotspot in inner ear diseases. This review briefly summarizes the research progress, opportunities and challenges of the application of nanoparticles in inner ear diseases.
Collapse
Affiliation(s)
- Liling Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, China; (L.L.); (J.L.); (X.L.)
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, China; (L.L.); (J.L.); (X.L.)
| | - Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, China; (L.L.); (J.L.); (X.L.)
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China;
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, China; (L.L.); (J.L.); (X.L.)
| |
Collapse
|
5
|
Goto K, Teramoto Y. Distribution of the Degree of Deacetylation of Surface-Deacetylated Chitin Nanofibers: Effects on Crystalline Structure and Cell Adhesion and Proliferation. ACS APPLIED BIO MATERIALS 2020; 3:8650-8657. [DOI: 10.1021/acsabm.0c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenki Goto
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshikuni Teramoto
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Petrova VA, Golovkin AS, Mishanin AI, Romanov DP, Chernyakov DD, Poshina DN, Skorik YA. Cytocompatibility of Bilayer Scaffolds Electrospun from Chitosan/Alginate-Chitin Nanowhiskers. Biomedicines 2020; 8:E305. [PMID: 32847141 PMCID: PMC7555292 DOI: 10.3390/biomedicines8090305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023] Open
Abstract
In this work, a bilayer chitosan/sodium alginate scaffold was prepared via a needleless electrospinning technique. The layer of sodium alginate was electrospun over the layer of chitosan. The introduction of partially deacetylated chitin nanowhiskers (CNW) stabilized the electrospinning and increased the spinnability of the sodium alginate solution. A CNW concentration of 7.5% provided optimal solution viscosity and structurization due to electrostatic interactions and the formation of a polyelectrolyte complex. This allowed electrospinning of defectless alginate nanofibers with an average diameter of 200-300 nm. The overall porosity of the bilayer scaffold was slightly lower than that of a chitosan monolayer, while the average pore size of up to 2 μm was larger for the bilayer scaffold. This high porosity promoted mesenchymal stem cell proliferation. The cells formed spherical colonies on the chitosan nanofibers, but formed flatter colonies and monolayers on alginate nanofibers. The fabricated chitosan/sodium alginate bilayer material was deemed promising for tissue engineering applications.
Collapse
Affiliation(s)
- Valentina A. Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia; (V.A.P.); (D.D.C.); (D.N.P.)
| | - Alexey S. Golovkin
- Almazov National Medical Research Centre, Akkuratova st. 2., 197341 St. Petersburg, Russia; (A.S.G.); (A.I.M.)
| | - Alexander I. Mishanin
- Almazov National Medical Research Centre, Akkuratova st. 2., 197341 St. Petersburg, Russia; (A.S.G.); (A.I.M.)
| | - Dmitry P. Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, 199034 St. Petersburg, Russia;
| | - Daniil D. Chernyakov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia; (V.A.P.); (D.D.C.); (D.N.P.)
| | - Daria N. Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia; (V.A.P.); (D.D.C.); (D.N.P.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia; (V.A.P.); (D.D.C.); (D.N.P.)
| |
Collapse
|
8
|
Petrova VA, Elokhovskiy VY, Raik SV, Poshina DN, Romanov DP, Skorik YA. Alginate Gel Reinforcement with Chitin Nanowhiskers Modulates Rheological Properties and Drug Release Profile. Biomolecules 2019; 9:E291. [PMID: 31331095 PMCID: PMC6680783 DOI: 10.3390/biom9070291] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023] Open
Abstract
Hydrogels are promising materials for various applications, including drug delivery, tissue engineering, and wastewater treatment. In this work, we designed an alginate (ALG) hydrogel containing partially deacetylated chitin nanowhiskers (CNW) as a filler. Gelation in the system occurred by both the protonation of alginic acid and the formation of a polyelectrolyte complex with deacetylated CNW surface chains. Morphological changes in the gel manifested as a honeycomb structure in the freeze-dried gel, unlike the layered structure of an ALG gel. Disturbance of the structural orientation of the gels by the introduction of CNW was also expressed as a decrease in the intensity of X-ray diffraction reflexes. All studied systems were non-Newtonian liquids that violated the Cox-Merz rule. An increase in the content of CNW in the ALG-CNW hydrogel resulted in increases in the yield stress, maximum Newtonian viscosity, and relaxation time. Inclusion of CNW prolonged the release of tetracycline due to changes in diffusion. The first phases (0-5 h) of the release profiles were well described by the Higuchi model. ALG-CNW hydrogels may be of interest as soft gels for controlled topical or intestinal drug delivery.
Collapse
Affiliation(s)
- Valentina A Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, St Petersburg 199004, Russia
| | - Vladimir Y Elokhovskiy
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, St Petersburg 199004, Russia
| | - Sergei V Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, St Petersburg 199004, Russia
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, St Petersburg 199004, Russia
| | - Dmitry P Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, St. Petersburg 199034, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, St Petersburg 199004, Russia.
- Almazov National Medical Research Centre, Akkuratova str. 2., St. Petersburg 197341, Russia.
| |
Collapse
|