1
|
Bergeson AR, Alper HS. Advancing sustainable biotechnology through protein engineering. Trends Biochem Sci 2024; 49:955-968. [PMID: 39232879 DOI: 10.1016/j.tibs.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
The push for industrial sustainability benefits from the use of enzymes as a replacement for traditional chemistry. Biological catalysts, especially those that have been engineered for increased activity, stability, or novel function, and are often greener than alternative chemical approaches. This Review highlights the role of engineered enzymes (and identifies directions for further engineering efforts) in the application areas of greenhouse gas sequestration, fuel production, bioremediation, and degradation of plastic wastes.
Collapse
Affiliation(s)
- Amelia R Bergeson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Tung CY, Tsai TT, Chiu PY, Viter R, Ramanavičius A, Yu CJ, Chen CF. Diagnosis of Mycobacterium tuberculosis using palladium-platinum bimetallic nanoparticles combined with paper-based analytical devices. NANOSCALE 2024; 16:5988-5998. [PMID: 38465745 DOI: 10.1039/d3nr05508f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In this study, we demonstrate that palladium-platinum bimetallic nanoparticles (Pd@Pt NPs) as the nanozyme, combined with a multi-layer paper-based analytical device and DNA hybridization, can successfully detect Mycobacterium tuberculosis. This nanozyme has peroxidase-like properties, which can increase the oxidation rate of the substrate. Compared with horseradish peroxidase, which is widely used in traditional detection, the Michaelis constants of Pd@Pt NPs are fourteen and seventeen times lower than those for 3,3',5,5'-tetramethylbenzidine and H2O2, respectively. To verify the catalytic efficiency of Pd@Pt NPs, this study will execute molecular diagnosis of Mycobacterium tuberculosis. We chose the IS6110 fragment as the target DNA and divided the complementary sequences into the capture DNA and reporter DNA. They were modified on paper and Pd@Pt NPs, respectively, to detect Mycobacterium tuberculosis on a paper-based analytical device. With the above-mentioned method, we can detect target DNA within 15 minutes with a linear range between 0.75 and 10 nM, and a detection limit of 0.216 nM. These results demonstrate that the proposed platform (a DNA-nanozyme integrated paper-based analytical device, dnPAD) can provide sensitive and on-site infection prognosis in areas with insufficient medical resources.
Collapse
Affiliation(s)
- Cheng-Yang Tung
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Ping-Yeh Chiu
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arũnas Ramanavičius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Cheng-Ju Yu
- Department of Applied Physics and Chemistry, University of Taipei, Taipei 100, Taiwan.
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
3
|
Li H, Zhu D, Yang Y, Ma Y, Chen Y, Xue P, Chen J, Qin M, Xu D, Cai C, Cheng H. Restricted tRNA methylation by intermolecular disulfide bonds in DNMT2/TRDMT1. Int J Biol Macromol 2023; 251:126310. [PMID: 37579906 DOI: 10.1016/j.ijbiomac.2023.126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Reportedly, DNMT2/TRDMT1 mainly methylates tRNAs at C38 and prevents them from the cleavage under stress. It also plays an essential role in the survival and physiological homeostasis of organisms. Nevertheless, DNMT2/TRDMT1 exhibits much weaker tRNA methylation activity in vitro than other tRNA methyltransferases, TrmD and Trm5. Here, we explored the restricted tRNA methylation mechanism by DNMT2/TRDMT1. In the current study, the optimized buffer C at 37 °C was the best condition for DNMT2/TRDMT1 activation. Of note, Dithiothreitol (DTT) was an indispensable component for this enzyme catalysis. Moreover, reductants took similar effects on the conformation change and oligomeric formation of DNMT2/TRDMT1. Ultimately, LC-MS/MS result revealed that C292-C292 and C292-C287 were predominant intermolecular disulfide bonds in recombinant DNMT2/TRDMT1. Notably, DNMT2/TRDMT1 existed primarily as dimers via intermolecular disulfide bonds C79-C24, C292-C292, and C222-C24 in HEK293T cells. GSSG stress enhanced tRNA methylation level in the early stage of stress, whereas the DNMT2/TRDMT1 activity might be unfavorable along with this enzyme accumulation in the nucleus. Excitingly, GSH stress downregulated the DNMT2/TRDMT1 expression and promoted tRNA methylation in cells, probably through breaking intermolecular disulfide bonds in this enzyme. Thus, our findings demonstrated restricted tRNA methylation by disulfide bonds in DNMT2/TRDMT1, and will provide important implications for redox stress related-diseases.
Collapse
Affiliation(s)
- Huari Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China.
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Yapeng Yang
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Yunfei Ma
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Yong Chen
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Pingfang Xue
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Juan Chen
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Mian Qin
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Dandan Xu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Chao Cai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Hongjing Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| |
Collapse
|
4
|
da Rocha TN, Morellon-Sterlling R, Rocha-Martin J, Bolivar JM, Gonçalves LRB, Fernandez-Lafuente R. Immobilization of Penicillin G Acylase on Vinyl Sulfone-Agarose: An Unexpected Effect of the Ionic Strength on the Performance of the Immobilization Process. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217587. [PMID: 36364414 PMCID: PMC9654356 DOI: 10.3390/molecules27217587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Penicillin G acylase (PGA) from Escherichia coli was immobilized on vinyl sulfone (VS) agarose. The immobilization of the enzyme failed at all pH values using 50 mM of buffer, while the progressive increase of ionic strength permitted its rapid immobilization under all studied pH values. This suggests that the moderate hydrophobicity of VS groups is enough to transform the VS-agarose in a heterofunctional support, that is, a support bearing hydrophobic features (able to adsorb the proteins) and chemical reactivity (able to give covalent bonds). Once PGA was immobilized on this support, the PGA immobilization on VS-agarose was optimized with the purpose of obtaining a stable and active biocatalyst, optimizing the immobilization, incubation and blocking steps characteristics of this immobilization protocol. Optimal conditions were immobilization in 1 M of sodium sulfate at pH 7.0, incubation at pH 10.0 for 3 h in the presence of glycerol and phenyl acetic acid, and final blocking with glycine or ethanolamine. This produced biocatalysts with stabilities similar to that of the glyoxyl-PGA (the most stable biocatalyst of this enzyme described in literature), although presenting just over 55% of the initially offered enzyme activity versus the 80% that is recovered using the glyoxyl-PGA. This heterofuncionality of agarose VS beads opens new possibilities for enzyme immobilization on this support.
Collapse
Affiliation(s)
- Thays N. da Rocha
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Chemical Engineering Department, Campus do Pici, Federal University of Ceará, Bloco 709, Fortaleza CEP 60440-900, CE, Brazil
| | - Roberto Morellon-Sterlling
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Campus UAM-CSIC, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Juan M. Bolivar
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., 28040 Madrid, Spain
| | - Luciana R. B. Gonçalves
- Chemical Engineering Department, Campus do Pici, Federal University of Ceará, Bloco 709, Fortaleza CEP 60440-900, CE, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +34-91594804
| |
Collapse
|
5
|
Functional characterization and substrate promiscuity analysis of UDP-glucose dehydrogenases from licorice (Glycyrrhiza uralensis). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Identification and Mutation Analysis of Nonconserved Residues on the TIM-Barrel Surface of GH5_5 Cellulases for Catalytic Efficiency and Stability Improvement. Appl Environ Microbiol 2022; 88:e0104622. [PMID: 36000858 PMCID: PMC9469711 DOI: 10.1128/aem.01046-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploring the potential functions of nonconserved residues on the outer side of α-helices and systematically optimizing them are pivotal for their application in protein engineering. Based on the evolutionary structural conservation analysis of GH5_5 cellulases, a practical molecular improvement strategy was developed. Highly variable sites on the outer side of the α-helices of the GH5_5 cellulase from Aspergillus niger (AnCel5A) were screened, and 14 out of the 34 highly variable sites were confirmed to exert a positive effect on the activity. After the modular combination of the positive mutations, the catalytic efficiency of the mutants was further improved. By using CMC-Na as the substrate, the catalytic efficiency and specific activity of variant AnCel5A_N193A/T300P/D307P were approximately 2.0-fold that of AnCel5A (227 ± 21 versus 451 ± 43 ml/s/mg and 1,726 ± 19 versus 3,472 ± 42 U/mg, respectively). The half-life (t1/2) of variant AnCel5A_N193A/T300P/D307P at 75°C was 2.36 times that of AnCel5A. The role of these sites was successfully validated in other GH5_5 cellulases. Computational analyses revealed that the flexibility of the loop 6-loop 7-loop 8 region was responsible for the increased catalytic performance. This work not only illustrated the important role of rapidly evolving positions on the outer side of the α-helices of GH5_5 cellulases but also revealed new insights into engineering the proteins that nature left as clues for us to find. IMPORTANCE A comprehensive understanding of the residues on the α-helices of the GH5_5 cellulases is important for catalytic efficiency and stability improvement. The main objective of this study was to use the evolutionary conservation and plasticity of the TIM-barrel fold to probe the relationship between nonconserved residues on the outer side of the α-helices and the catalytic efficiency of GH5_5 cellulases by conducting structure-guided protein engineering. By using a four-step nonconserved residue screening strategy, the functional role of nonconserved residues on the outer side of the α-helices was effectively identified, and a variant with superior performance and capability was constructed. Hence, this study proved the effectiveness of this strategy in engineering GH5_5 cellulases and provided a potential competitor for industrial applications. Furthermore, this study sheds new light on engineering TIM-barrel proteins.
Collapse
|
7
|
Palladium-platinum bimetallic nanomaterials and their application in Staphylococcus aureus detection on paper-based devices. Biosens Bioelectron 2022; 216:114669. [DOI: 10.1016/j.bios.2022.114669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
|
8
|
Jayasekara S, Dissanayake L, Jayakody LN. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials. Int J Food Microbiol 2022; 377:109785. [PMID: 35752069 DOI: 10.1016/j.ijfoodmicro.2022.109785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022]
Abstract
Many petroleum-derived plastics, including food packaging materials are non-biodegradable and designed for single-use applications. Annually, around 175 Mt. of plastic enters the land and ocean ecosystems due to mismanagement and lack of techno economically feasible plastic waste recycling technologies. Renewable sourced, biodegradable polymer-based food packaging materials can reduce this environmental pollution. Sugar production from sugarcane or sugar beet generates organic waste streams that contain fermentable substrates, including sugars, acids, and aromatics. Microbial metabolism can be leveraged to funnel those molecules to platform chemicals or biopolymers to generate biodegradable food packaging materials that have active or sensing molecules embedded in biopolymer matrices. The smart package can real-time monitor food quality, assure health safety, and provide economic and environmental benefits. Active packaging materials display functional properties such as antimicrobial, antioxidant, and light or gas barrier. This article provides an overview of potential biodegradable smart/active polymer packages for food applications by valorizing sugar industry-generated organic waste. We highlight the potential microbial pathways and metabolic engineering strategies to biofunnel the waste carbon efficiently into the targeted platform chemicals such as lactic, succinate, muconate, and biopolymers, including polyhydroxyalkanoates, and bacterial cellulose. The obtained platform chemicals can be used to produce biodegradable polymers such as poly (butylene adipate-co-terephthalate) (PBAT) that could replace incumbent polyethylene and polypropylene food packaging materials. When nanomaterials are added, these polymers can be active/smart. The process can remarkably lower the greenhouse gas emission and energy used to produce food-packaging material via sugar industrial waste carbon relative to the petroleum-based production. The proposed green routes enable the valorization of sugar processing organic waste into biodegradable materials and enable the circular economy.
Collapse
Affiliation(s)
- Sandhya Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lakshika Dissanayake
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| |
Collapse
|
9
|
Wang X, Du J, Zhao B, Wang H, Rao S, Du G, Zhou J, Chen J, Liu S. Significantly Improving the Thermostability and Catalytic Efficiency of Streptomyces mobaraenesis Transglutaminase through Combined Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15268-15278. [PMID: 34874715 DOI: 10.1021/acs.jafc.1c05256] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Streptomyces mobaraenesis transglutaminase has been widely used in food processing. We here significantly improved the catalytic properties of S2P-S23V-Y24N-S199A-K294L (TGm1), a highly stabilized variant of the transglutaminase. First, a virtual proline scan was performed based on folding free energy changes to obtain TGm1 variants with enhanced thermostability. Second, the residues within 15 Å of Cys64 in the enzyme-substrate complex of TGm1 were subjected to virtual saturation mutagenesis to generate the variants with reduced binding free energy and increased activity. After combining the favorable mutations, we obtained the variant FRAPD-TGm1-E28T-A265P-A287P (FRAPD-TGm2), exhibiting 66.9 min of half-life at 60 °C (t1/2(60 °C)), 67.8 °C of melting temperature (Tm), and 71.8 U/mg of specific activity, which are 2-fold, 2.6 °C, and 43.8% higher than those of FRAPD-TGm1, respectively. At last, to increase the surface negative net charge of FRAPD-TGm2, we introduced the mutations N96E-S144E-N163D-R183E-R208E-K325E, yielding FRAPD-TGm3. The latter's t1/2(60 °C), Tm, and specific activity were 122.9 min, 68.6 °C, and 83.7 U/mg, which are 83.8%, 0.8 °C, and 16.6% higher than the former, respectively. FRAPD-TGm3 is thus a robust candidate for transglutaminase application.
Collapse
Affiliation(s)
- Xinglong Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianhui Du
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Beichen Zhao
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haiyan Wang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Guocheng Du
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Paul M, Mohapatra S, Kumar Das Mohapatra P, Thatoi H. Microbial cellulases - An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential. BIORESOURCE TECHNOLOGY 2021; 340:125710. [PMID: 34365301 DOI: 10.1016/j.biortech.2021.125710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The inherent resistance of lignocellulosic biomass makes it impervious for industrially important enzymes such as cellulases to hydrolyze cellulose. Further, the competitive absorption behavior of lignin and hemicellulose for cellulases, due to their electron-rich surfaces augments the inappropriate utilization of these enzymes. Hence, modification of the surface charge of the cellulases to reduce its non-specific binding to lignin and enhance its affinity for cellulose is an urgent necessity. Further, maintaining the stability of cellulases by the preservation of their secondary structures using immobilization techniques will also play an integral role in its industrial production. In silico approaches for increasing the catalytic activity of cellulase enzymes is also significant along with a range of substrate specificity. In addition, enhanced productivity of cellulases by tailoring the related genes through the process of genetic engineering and higher cellulase recovery after saccharification seems to be promising areas for efficient and large-scale enzyme production concepts.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India
| | - Sonali Mohapatra
- Department of Biotechnology, College of Engineering & Technology, Bhubaneswar 751003, Odisha, India
| | - Pradeep Kumar Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India; PAKB Environment Conservation Centre, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India.
| |
Collapse
|
11
|
Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. Int J Biol Macromol 2021; 188:226-244. [PMID: 34371052 DOI: 10.1016/j.ijbiomac.2021.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Cellulases play a promising role in the bioconversion of renewable lignocellulosic biomass into fermentable sugars which are subsequently fermented to biofuels and other value-added chemicals. Besides biofuel industries, they are also in huge demand in textile, detergent, and paper and pulp industries. Low titres of cellulase production and processing are the main issues that contribute to high enzyme cost. The success of ethanol-based biorefinery depends on high production titres and the catalytic efficiency of cellulases functional at elevated temperatures with acid/alkali tolerance and the low cost. In view of their wider application in various industrial processes, stable cellulases that are active at elevated temperatures in the acidic-alkaline pH ranges, and organic solvents and salt tolerance would be useful. This review provides a recent update on the advances made in thermostable cellulases. Developments in their sources, characteristics and mechanisms are updated. Various methods such as rational design, directed evolution, synthetic & system biology and immobilization techniques adopted in evolving cellulases with ameliorated thermostability and characteristics are also discussed. The wide range of applications of thermostable cellulases in various industrial sectors is described.
Collapse
|
12
|
Mondal S, Halder SK, Mondal KC. Tailoring in fungi for next generation cellulase production with special reference to CRISPR/CAS system. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 2:113-129. [PMID: 38624901 PMCID: PMC8319711 DOI: 10.1007/s43393-021-00045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022]
Abstract
Cellulose is the utmost plenteous source of biopolymer in our earth, and fungi are the most efficient and ubiquitous organism in degrading the cellulosic biomass by synthesizing cellulases. Tailoring through genetic manipulation has played a substantial role in constructing novel fungal strains towards improved cellulase production of desired traits. However, the traditional methods of genetic manipulation of fungi are time-consuming and tedious. With the availability of the full-genome sequences of several industrially relevant filamentous fungi, CRISPR-CAS (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) technology has come into the focus for the proficient development of manipulated strains of filamentous fungi. This review summarizes the mode of action of cellulases, transcription level regulation for cellulase expression, various traditional strategies of genetic manipulation with CRISPR-CAS technology to develop modified fungal strains for a preferred level of cellulase production, and the futuristic trend in this arena of research.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Center for Life Sciences, Vidyasagar University, Midnapore, 721102 West Bengal India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, 721102 West Bengal India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, 721102 West Bengal India
| |
Collapse
|
13
|
Mandeep, Liu H, Shukla P. Synthetic Biology and Biocomputational Approaches for Improving Microbial Endoglucanases toward Their Innovative Applications. ACS OMEGA 2021; 6:6055-6063. [PMID: 33718696 PMCID: PMC7948214 DOI: 10.1021/acsomega.0c05744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2023]
Abstract
Microbial endoglucanases belonging to the β-1-4 glycosyl hydrolase family are useful enzymes due to their vast industrial applications in pulp and paper industries and biorefinery. They convert lignocellulosic substrates to soluble sugars and help in the biodegradation process. Various biocomputational tools can be utilized to understand the catalytic activity, reaction kinetics, complexity of active sites, and chemical behavior of enzyme complexes in reactions. This might be helpful in increasing productivity and cost reduction in industries. The present review gives an overview of some interesting aspects of enzyme design, including computational techniques such as molecular dynamics simulation, homology modeling, mutational analysis, etc., toward enhancing the quality of these enzymes. Moreover, the review also covers the aspects of synthetic biology, which could be helpful in faster and reliable development of useful enzymes with desired characteristics and applications. Finally, the review also deciphers the utilization of endoglucanases in biodegradation and emphasizes the use of diversified protein engineering tools and the modification of metabolic pathways for enzyme engineering.
Collapse
Affiliation(s)
- Mandeep
- Enzyme
Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Hao Liu
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pratyoosh Shukla
- Enzyme
Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
- School
of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
14
|
Lv K, Shao W, Pedroso MM, Peng J, Wu B, Li J, He B, Schenk G. Enhancing the catalytic activity of a GH5 processive endoglucanase from Bacillus subtilis BS-5 by site-directed mutagenesis. Int J Biol Macromol 2020; 168:442-452. [PMID: 33310097 DOI: 10.1016/j.ijbiomac.2020.12.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Processive endoglucanases possess both endo- and exoglucanase activity, making them attractive discovery and engineering targets. Here, a processive endoglucanase EG5C-1 from Bacillus subtilis was employed as the starting point for enzyme engineering. Referring to the complex structure information of EG5C-1 and cellohexaose, the amino acid residues in the active site architecture were identified and subjected to alanine scanning mutagenesis. The residues were chosen for a saturation mutagenesis since their variants showed similar activities to EG5C-1. Variants D70Q and S235W showed increased activity towards the substrates CMC and Avicel, an increase was further enhanced in D70Q/S235W double mutant, which displayed a 2.1- and 1.7-fold improvement in the hydrolytic activity towards CMC and Avicel, respectively. In addition, kinetic measurements showed that double mutant had higher substrate affinity (Km) and a significantly higher catalytic efficiency (kcat/Km). The binding isotherms of wild-type EG5C-1 and double mutant D70Q/S235W suggested that the binding capability of EG5C-1 for the insoluble substrate was weaker than that of D70Q/S235W. Molecular dynamics simulations suggested that the collaborative substitutions of D70Q and S235W altered the hydrogen bonding network within the active site architecture and introduced new hydrogen bonds between the enzyme and cellohexaose, thus enhancing both substrate affinity and catalytic efficiency.
Collapse
Affiliation(s)
- Kemin Lv
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China
| | - Wenyu Shao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jiayu Peng
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China.
| | - Jiahuang Li
- School of Life Science, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Dadwal A, Sharma S, Satyanarayana T. Progress in Ameliorating Beneficial Characteristics of Microbial Cellulases by Genetic Engineering Approaches for Cellulose Saccharification. Front Microbiol 2020; 11:1387. [PMID: 32670240 PMCID: PMC7327088 DOI: 10.3389/fmicb.2020.01387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Lignocellulosic biomass is a renewable and sustainable energy source. Cellulases are the enzymes that cleave β-1, 4-glycosidic linkages in cellulose to liberate sugars that can be fermented to ethanol, butanol, and other products. Low enzyme activity and yield, and thermostability are, however, some of the limitations posing hurdles in saccharification of lignocellulosic residues. Recent advancements in synthetic and systems biology have generated immense interest in metabolic and genetic engineering that has led to the development of sustainable technology for saccharification of lignocellulosics in the last couple of decades. There have been several attempts in applying genetic engineering in the production of a repertoire of cellulases at a low cost with a high biomass saccharification. A diverse range of cellulases are produced by different microbes, some of which are being engineered to evolve robust cellulases. This review summarizes various successful genetic engineering strategies employed for improving cellulase kinetics and cellulolytic efficiency.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
16
|
Engineering Leuconostoc mesenteroides dextransucrase by inserting disulfide bridges for enhanced thermotolerance. Enzyme Microb Technol 2020; 139:109603. [PMID: 32732025 DOI: 10.1016/j.enzmictec.2020.109603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 11/23/2022]
Abstract
The disulfide bridge is a very important part of the peptide chain and plays an important role in stabilizing the protein structure and maintaining its active function. One hundred and fourteen potential disulfide bridges were determined by Disulfide by Design™, and 4 disulfide bridges were constructed for the purpose of obtaining new enzyme species with high thermotolerance. High thermotolerance is achieved by increasing the number of hydrogen bonds between amino acids. The optimum temperatures of mutant L838C-V887C and A948C-A1013C were improved by 10 °C compared to that of the original enzyme, which was beneficial to reduce the viscosity of the reaction system. Some of the mutations resulted in the alteration of catalytic specificity, and the products D739C-F932C and A948C-A1013C catalyzed synthesis of dextran containing a new α(1-4) glycosidic linkage and α(1-2) glycosidic linkage. This study may provide information valuable for increasing the reaction temperature of recombinant dextransucrase. The molecular docking study presents a plausible explanation for reaction specificity alteration and optimum temperature improvement for the mutants.
Collapse
|
17
|
Ibarra LN, Alves AEODA, Antonino JD, Prado GS, Pinto CEM, Soccol CR, Vasconcelos ÉARD, Grossi-de-Sa MF. Enzymatic activity of a recombinant β-1,4-endoglucanase from the Cotton Boll Weevil (Anthonomus grandis) aiming second generation ethanol production. Sci Rep 2019; 9:19580. [PMID: 31862955 PMCID: PMC6925290 DOI: 10.1038/s41598-019-56070-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
In the last years, the production of ethanol fuel has started to change with the introduction of second-generation ethanol (2 G Ethanol) in the energy sector. However, in Brazil, the process of obtaining 2 G ethanol did not reach a basic standard to achieve relevant and economically viable results. Several studies have currently been addressed to solve these issues. A critical stage in the bioethanol production is the deployment of efficient and stable enzymes to catalyze the saccharification step into the process of biomass conversion. The present study comprises a screening for genes coding for plant biomass degradation enzymes, followed by cloning a selected gene, addressing its heterologous expression, and characterizing enzymatic activity towards cellulose derived substrates, with a view to second-generation ethanol production. A cDNA database of the Cotton Boll Weevil, Anthonomus grandis (Coleoptera: Curculionidae), an insect that feeds on cotton plant biomass, was used as a source of plant biomass degradation enzyme genes. A larva and adult midgut-specific β-1,4-Endoglucanase-coding gene (AgraGH45-1) was cloned and expressed in the yeast Pichia pastoris. Its amino acid sequence, including the two catalytic domains, shares high identity with other Coleoptera Glycosyl Hydrolases from family 45 (GH45). AgraGH45-1 activity was detected in a Carboxymethylcellulose (CMC) and Hydroxyethylcellulose (HEC) degradation assay and the optimal conditions for enzymatic activity was pH 5.0 at 50 °C. When compared to commercial cellulase from Aspergillus niger, Agra GH45-1 was 1.3-fold more efficient to degrade HEC substrate. Together, these results show that AgraGH45-1 is a valid candidate to be engineered and be tested for 2 G ethanol production.
Collapse
Affiliation(s)
- Liz Nathalia Ibarra
- Universidade Federal do Paraná - UFPR, Curitiba, PR, 81530-980, Brazil.,Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil
| | - Ana Elizabeth Oliveira de Araújo Alves
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil.,Universidade de Brasília - UnB, Biology Institute, Brasília, DF, 70910-900, Brazil
| | - José Dijair Antonino
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil.,Universidade Federal Rural de Pernambuco - UFRPE, Recife-PE, 52171-900, Brazil
| | - Guilherme Souza Prado
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil.,Universidade Católica de Brasília - UCB, Brasília, DF, 70790-160, Brazil
| | - Clidia Eduarda Moreira Pinto
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil.,Universidade de Brasília - UnB, Biology Institute, Brasília, DF, 70910-900, Brazil
| | | | | | - Maria Fátima Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil.,Universidade Católica de Brasília - UCB, Brasília, DF, 70790-160, Brazil
| |
Collapse
|
18
|
Dehnavi E, Moeini S, Akbarzadeh A, Dabirmanesh B, Siadat SOR, Khajeh K. Improvement of Selenomonas ruminantium β-xylosidase thermal stability by replacing buried free cysteines via site directed mutagenesis. Int J Biol Macromol 2019; 136:352-358. [DOI: 10.1016/j.ijbiomac.2019.06.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
|
19
|
Ribeiro LF, Amarelle V, Alves LDF, Viana de Siqueira GM, Lovate GL, Borelli TC, Guazzaroni ME. Genetically Engineered Proteins to Improve Biomass Conversion: New Advances and Challenges for Tailoring Biocatalysts. Molecules 2019; 24:molecules24162879. [PMID: 31398877 PMCID: PMC6719137 DOI: 10.3390/molecules24162879] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023] Open
Abstract
Protein engineering emerged as a powerful approach to generate more robust and efficient biocatalysts for bio-based economy applications, an alternative to ecologically toxic chemistries that rely on petroleum. On the quest for environmentally friendly technologies, sustainable and low-cost resources such as lignocellulosic plant-derived biomass are being used for the production of biofuels and fine chemicals. Since most of the enzymes used in the biorefinery industry act in suboptimal conditions, modification of their catalytic properties through protein rational design and in vitro evolution techniques allows the improvement of enzymatic parameters such as specificity, activity, efficiency, secretability, and stability, leading to better yields in the production lines. This review focuses on the current application of protein engineering techniques for improving the catalytic performance of enzymes used to break down lignocellulosic polymers. We discuss the use of both classical and modern methods reported in the literature in the last five years that allowed the boosting of biocatalysts for biomass degradation.
Collapse
Affiliation(s)
- Lucas Ferreira Ribeiro
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
| | - Vanesa Amarelle
- Department of Microbial Biochemistry and Genomics, Biological Research Institute Clemente Estable, Montevideo, PC 11600, Uruguay
| | - Luana de Fátima Alves
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Gabriel Lencioni Lovate
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
| |
Collapse
|