1
|
Yip YS, Jaafar NR, Rahman RA, Puspaningsih NNT, Jailani N, Illias RM. Improvement of combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase and maltogenic amylase by functionalization of cross-linker for maltooligosaccharides synthesis. Int J Biol Macromol 2024; 273:133241. [PMID: 38897508 DOI: 10.1016/j.ijbiomac.2024.133241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase (CGTase) and maltogenic amylase (Mag1) from Bacillus lehensis G1 (Combi-CLEAs-CM) were successfully developed to synthesis maltooligosaccharides (MOS). Yet, the poor cross-linking performance between chitosan (cross-linker) and enzymes resulting low activity recovery and catalytic efficiency. In this study, we proposed the functionalization of cross-linkers with the integration of computational analysis to study the influences of different functional group on cross-linkers in combi-CLEAs development. From in-silico analysis, O-carboxymethyl chitosan (OCMCS) with the highest binding affinity toward both enzymes was chosen and showed alignment with the experimental result, in which OCMCS was synthesized as cross-linker to develop improved activity recovery of Combi-CLEAs-CM-ocmcs (74 %). The thermal stability and deactivation energy (205.86 kJ/mol) of Combi-CLEAs-CM-ocmcs were found to be higher than Combi-CLEAs-CM (192.59 kJ/mol). The introduction of longer side chain of carboxymethyl group led to a more flexible structure of Combi-CLEAs-CM-ocmcs. This alteration significantly reduced the Km value of Combi-CLEAs-CM-ocmcs by about 3.64-fold and resulted in a greater Kcat/Km (3.63-fold higher) as compared to Combi-CLEAs-CM. Moreover, Combi-CLEAs-CM-ocmcs improved the reusability with retained >50 % of activity while Combi-CLEAs-CM only 36.18 % after five cycles. Finally, maximum MOS production (777.46 mg/g) was obtained by Combi-CLEAs-CM-ocmcs after optimization using response surface methodology.
Collapse
Affiliation(s)
- Yee Seng Yip
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ni Nyoman Tri Puspaningsih
- Laboratory of Proteomics, University-CoE Research Center for Bio-Molecule Engineering, Universitas Airlangga, Kampus C-UNAIR, Surabaya, East Java, Indonesia
| | - Nashriq Jailani
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Rosli Md Illias
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
2
|
Abd Rahman NH, Rahman RA, Rahmat Z, Jaafar NR, Puspaningsih NNT, Illias RM. Innovative biocatalyst synthesis of pectinolytic enzymes by cross-linking strategy: Potentially immobilised pectinases for the production of pectic-oligosaccharides from pectin. Int J Biol Macromol 2024; 256:128260. [PMID: 38000618 DOI: 10.1016/j.ijbiomac.2023.128260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/19/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Pectinases are outstanding multienzymes, which have the potential to produce new emerging pectic-oligosaccharides (POS) via enzymatic hydrolysis of pectin. However, free pectinase is unable to undergo repeated reaction for the production of POS. This study proposed a sustainable biocatalyst of pectinases known as cross-linked pectinase aggregates (CLPA). Pectinase from Aspergillus aculeatus was successfully precipitated using 2 mg/mL pectinase and 60 % acetone for 20 min at 20 °C, which remained 36.3 % of its initial activity. The prepared CLPA showed the highest activity recovery (85.0 %), under the optimised conditions (0.3 % (v/v) starch and glutaraldehyde mixture (St/Ga), 1.5: 1 of St/Ga, 25 °C, 1.5 h). Furthermore, pectin-degrading enzymes from various sources were used to produce different CLPA. The alteration of pectinase secondary structure gave high stability in acidic condition (pH 4), thermostability, deactivation energy and half-life, and improved storage stability at 4 °C for 30 days. Similarly to their free counterpart, the CLPA exhibited comparable enzymatic reaction kinetics and could be reused eight times with approximately 20 % of its initial activity. The developed CLPA does not only efficaciously produced POS from pectin as their free form, but also exhibited better operational stability and reusability, making it more suitable for POS production.
Collapse
Affiliation(s)
- Noor Hidayah Abd Rahman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Zaidah Rahmat
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Ni Nyoman Tri Puspaningsih
- Laboratory of Proteomics, University-CoE Research Center for Bio-Molecule Engineering, Universitas Airlangga, Kampus C-UNAIR, Surabaya, East Java, Indonesia
| | - Rosli Md Illias
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| |
Collapse
|
3
|
Taibi H, Boudries N, Abdelhai M, Lounici H. Comparison of Immobilized and Free Amyloglucosidase Process in Glucose SyrupsProduction from White Sorghum Starch. Chem Biodivers 2023; 20:e202300071. [PMID: 37410997 DOI: 10.1002/cbdv.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Optimum conditions for glucose syrups production from white sorghum were studied through sequential liquefaction and saccharification processes. In the liquefaction process, a maximum dextrose equivalent (DE) of 10.98 % was achieved using 30 % (w/v) of starch and Termamyl ɑ-amylase from Bacillus licheniformis. Saccharification was performed by free and immobilized amyloglucosidase from Rhizopus mold at 1 % (w/v). DE values of 88.32 % and 79.95 % were obtained from 30 % (w/v) of starch with, respectively, free and immobilized enzyme. The immobilized Amyloglucosidase in calcium alginate beads showed reusable capacity for up to 6 cycles with 46 % of the original activity retained. The kinetic behaviour of immobilized and free enzyme gives Km value of 22.13 and 16.55 mg mL-1 and Vmax of 0.69 and 1.61 mg mL-1 min-1 , respectively. The hydrolysis yield using immobilized amyloglucosidase were lower than that of the free one. However, it is relevant to reuse enzyme without losing activity in order to trim down the overall costs of enzymatic bioprocesses as starch transformation into required products in industrial manufacturing. Hydrolysis of sorghum starch using immobilized amyloglucosidase represents a promising alternative towards the development of the glucose syrups production process and its utilization in various industries.
Collapse
Affiliation(s)
- Houria Taibi
- Laboratory of Bioactive Products and Biomass Valorization Research, Département de Chimie, Ecole Normale Supérieure Cheikh Mohamed El-Bachir El-Ibrahimi, ENS-KOUBA, BO 92 Vieux, Kouba, Algiers, Algeria
| | - Nadia Boudries
- Laboratory of Bioactive Products and Biomass Valorization Research, Département de Chimie, Ecole Normale Supérieure Cheikh Mohamed El-Bachir El-Ibrahimi, ENS-KOUBA, BO 92 Vieux, Kouba, Algiers, Algeria
| | - Moufida Abdelhai
- Laboratory of Bioactive Products and Biomass Valorization Research, Département de Chimie, Ecole Normale Supérieure Cheikh Mohamed El-Bachir El-Ibrahimi, ENS-KOUBA, BO 92 Vieux, Kouba, Algiers, Algeria
| | - Hakim Lounici
- Laboratory of Materials and Sustainable Development, Université Akli Mohand Oulhadj, Bouira. Avenue Drissi Yahia, Bouira-Algérie, Algeria
| |
Collapse
|
4
|
Yip YS, Manas NHA, Jaafar NR, Rahman RA, Puspaningsih NNT, Illias RM. Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase and maltogenic amylase from Bacillus lehensis G1 for maltooligosaccharides synthesis. Int J Biol Macromol 2023; 242:124675. [PMID: 37127056 DOI: 10.1016/j.ijbiomac.2023.124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Maltooligosaccharides (MOS) are functional oligosaccharides that can be synthesized through enzymatic cascade reaction between cyclodextrin glucanotransferase (CGTase) and maltogenic amylase (Mag1) from Bacillus lehensis G1. To address the problems of low operational stability and non-reusability of free enzymes, both enzymes were co-immobilized as combined cross-linked enzyme aggregates (Combi-CLEAs-CM) with incorporation of bovine serum albumin (BSA) and Tween 80 (Combi-CLEAs-CM-add). Combi-CLEAs-CM and Combi-CLEAs-CM-add showed activity recoveries of 54.12 % and 69.44 %, respectively after optimization. Combi-CLEAs-CM-add showed higher thermal stability at higher temperatures (40 °C) with longer half-life (46.20 min) as compared to those of free enzymes (36.67 min) and Combi-CLEAs-CM (41.51 min). Both combi-CLEAs also exhibited higher pH stability over pH 5 to pH 9, and displayed excellent reusability with >50 % of initial activity retained after four cycles. The reduction in Km value of about 22.80 % and 1.76-fold increase in starch hydrolysis in comparison to Combi-CLEAs-CM attested the improvement of enzyme-substrate interaction by Tween 80 and pores formation by BSA in Combi-CLEAs-CM-add. The improved product specificity of Combi-CLEAs-CM-add also produced the highest yield of MOS (492 mg/g) after 3 h. Therefore, Combi-CLEAs-CM-add with ease of preparation, excellent reusability and high operational stability is believed to be highly efficacious biocatalyst for MOS production.
Collapse
Affiliation(s)
- Yee Seng Yip
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ni Nyoman Tri Puspaningsih
- Laboratory of Proteomics, University-CoE Research Center for Bio-Molecule Engineering, Universitas Airlangga, Kampus C-UNAIR, Surabaya, East Java, Indonesia
| | - Rosli Md Illias
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
5
|
Cross-linked enzyme aggregates (CLEAs) of cellulase with improved catalytic activity, adaptability and reusability. Bioprocess Biosyst Eng 2022; 45:865-875. [DOI: 10.1007/s00449-022-02704-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/03/2022] [Indexed: 01/03/2023]
|
6
|
Ullah H, Pervez S, Ahmed S, Haleem KS, Qayyum S, Niaz Z, Nawaz MA, Nawaz F, Subhan F, Tauseef I. Preparation, characterization and stability studies of cross-linked α-amylase aggregates (CLAAs) for continuous liquefaction of starch. Int J Biol Macromol 2021; 173:267-276. [PMID: 33454331 DOI: 10.1016/j.ijbiomac.2021.01.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/30/2020] [Accepted: 01/10/2021] [Indexed: 11/16/2022]
Abstract
In current study, α-amylase of fungal origin was immobilized using cross-linking strategy. The influence of precipitant (ammonium sulphate) and cross-linker (glutaraldehyde) concentration revealed that 60% (w/v) precipitant and 1.5% (v/v) cross-linker saturation was required to attain optimum activity. Cross-linked amylase aggregates (CLAAs) were characterized and 10-degree shift in optimum temperature (soluble enzyme: 50 °C; cross-linked: 60 °C) and 1-unit shift in pH (soluble enzyme: pH -6; cross-linked: pH -7) was observed after immobilization. The Vmax for soluble α-amylase and its cross-linked form was 1225 U ml-1 and 3629 U ml-1, respectively. The CLAAs was more thermostable than its soluble form and retained its 30% activity even after 60 min of incubation at 70 °C. Moreover, cross-linked amylase retained its activity after two months while its soluble counterpart lost its complete activity after 10 and 20 days at 30 °C and 4 °C storage, respectively. Reusability test showed that cross-linked amylase could retain 13% of its residual activity after 10 repeated cycles. Therefore, 10 times more glucose was produced after cross-linking than soluble amylase when it was utilized multiple times. This study indicates that amylase aggregates are highly effective for continuous liquefaction of starch, hence have strong potential to be used for different industrial processes.
Collapse
Affiliation(s)
- Hidayat Ullah
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan.
| | - Shehzad Ahmed
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | | | - Sadia Qayyum
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Zeeshan Niaz
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), KPK, Pakistan
| | - Faiza Nawaz
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Fazli Subhan
- Department of Biological Sciences, NUMS, Rawalpindi 46000, Pakistan
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan.
| |
Collapse
|
7
|
Singh N, Gaur S. GRAS Fungi: A New Horizon in Safer Food Product. Fungal Biol 2021. [DOI: 10.1007/978-3-030-64406-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Abstract
Optical biosensors have exhibited worthwhile performance in detecting biological systems and promoting significant advances in clinical diagnostics, drug discovery, food process control, and environmental monitoring. Without complexity in their pretreatment and probable influence on the nature of target molecules, these biosensors have additional advantages such as high sensitivity, robustness, reliability, and potential to be integrated on a single chip. In this review, the state of the art optical biosensor technologies, including those based on surface plasmon resonance (SPR), optical waveguides, optical resonators, photonic crystals, and optical fibers, are presented. The principles for each type of biosensor are concisely introduced and particular emphasis has been placed on recent achievements. The strengths and weaknesses of each type of biosensor have been outlined as well. Concluding remarks regarding the perspectives of future developments are discussed.
Collapse
Affiliation(s)
- Chen Chen
- College of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China.
| | - Junsheng Wang
- College of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
9
|
Abd Rahman NH, Jaafar NR, Abdul Murad AM, Abu Bakar FD, Shamsul Annuar NA, Md Illias R. Novel cross-linked enzyme aggregates of levanase from Bacillus lehensis G1 for short-chain fructooligosaccharides synthesis: Developmental, physicochemical, kinetic and thermodynamic properties. Int J Biol Macromol 2020; 159:577-589. [DOI: 10.1016/j.ijbiomac.2020.04.262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
10
|
Gupta MN, Perwez M, Sardar M. Protein crosslinking: Uses in chemistry, biology and biotechnology. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1733990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|