1
|
Basta AH, Lotfy VF. Opportunity for valorization of pulping by-product in production high performance sustaining release lignin-based gel. Int J Biol Macromol 2024; 279:135174. [PMID: 39214196 DOI: 10.1016/j.ijbiomac.2024.135174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study focuses on optimizing the pulping by-product to produce effective hydrogels for controlling the release of salicylic acid (SA). In this regard, two routes are achieved: the first involves preparing black liquor (BL) composite hydrogels with various polymer macromolecules [polyacrylamide (PAM), polyvinyl alcohol (PVA), and chitosan (Cs), and the second involves carboxymethylation of BL and grafting with acrylamide. Hydrogels are evaluated using spectral analysis (ATR-FTIR), thermal analysis (TGA and DTG), and swelling measures. Encapsulation, release profile, SA release kinetics, as well as ATR-FTIR and SEM measurements, were used to evaluate the behavior of loaded hydrogels. According to the results, grafted carboxymethylated BL-gel had the maximum SA release (98.7 %), followed by PAM-BL (51.7 %) and PAM/PVA-BL (43.1 %). Over a 48-hour period, the hydrogels demonstrated a prolonged SA release pattern. The Ritger-Peppas and Higuchi models fitted to all examined hydrogels showed that SA release followed both Fickian and non-Fickian diffusion pathways.
Collapse
Affiliation(s)
- Altaf H Basta
- Cellulose and Paper Dept., National Research Centre, Dokki 12622, Giza, Egypt.
| | - Vivian F Lotfy
- Cellulose and Paper Dept., National Research Centre, Dokki 12622, Giza, Egypt
| |
Collapse
|
2
|
Jeffri NI, Mohammad Rawi NF, Mohamad Kassim MH, Abdullah CK. Unlocking the potential: Evolving role of technical lignin in diverse applications and overcoming challenges. Int J Biol Macromol 2024; 274:133506. [PMID: 38944064 DOI: 10.1016/j.ijbiomac.2024.133506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Recent advancements have transformed lignin from a byproduct into a valuable raw material for polymers, dyes, adhesives, and fertilizers. However, its structural heterogeneity, variable reactive group content, impurities, and high extraction costs pose challenges to industrial-scale adoption. Efficient separation technologies and selective bond cleavage are crucial. Advanced pretreatment methods have enhanced lignin purity and reduced contamination, while novel catalytic techniques have improved depolymerization efficiency and selectivity. This review compares catalytic depolymerization methodologies, highlighting their advantages and disadvantages, and noting challenges in comparing yield values due to variations in isolation methods and lignin sources. Recognizing "technical lignin" from pulping processes, the review emphasizes its diverse applications and the necessity of understanding its structural characteristics. Emerging trends focus on bio-based functional additives and nanostructured lignin materials, promising enhanced properties and functionalities. Innovations open possibilities in sustainable agriculture, high-performance foams and composites, and advanced medical applications like drug delivery and wound healing. Leveraging lignin's biocompatibility, abundance, and potential for high-value applications, it can significantly contribute to sustainable material development across various industries. Continuous research in bio-based additives and nanostructured materials underscores lignin's potential to revolutionize material science and promote environmentally friendly industrial applications.
Collapse
Affiliation(s)
- Noorfarisya Izma Jeffri
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia; Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Minden, 11800, Malaysia.
| | - Mohamad Haafiz Mohamad Kassim
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia; Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Minden, 11800, Malaysia
| | - Che Ku Abdullah
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
3
|
Li S, Li X, Li S, Xu P, Liu Z, Yu S. In-situ preparation of lignin/Fe 3O 4 magnetic spheres as bifunctional material for the efficient removal of metal ions and methylene blue. Int J Biol Macromol 2024; 259:128971. [PMID: 38161011 DOI: 10.1016/j.ijbiomac.2023.128971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In this paper, magnetic composite of lignin/Fe3O4 spheres were synthesized via a straightforward one-step in-situ solvothermal method showing good capacity for adsorbing heavy metal ions and dyes. The physicochemical properties of lignin/Fe3O4 spheres are analyzed using a range of techniques such as SEM, XRD, FTIR, VSM, TG, and BET. Lignin/Fe3O4 spheres exhibited high adsorption capacities of 100.00, 353.36 and 223.71 and 180.18 mg/g for Cu (II), Ni (II) and Cr (VI) metal ions and methylene blue (MB) with equilibrium attained within 60 min. After the recycling experiments, lignin/Fe3O4 spheres still possesses excellent superparamagnetic properties and displays high adsorption capacity. The lignin/Fe3O4 spheres are an efficient and continuous adsorbent to remove heavy metal ions of Cu (II), Ni (II), Cr (VI) and cationic dyes of methylene blue in wastewater, which proves the great potential in practical pollutants treatment applications for water systems.
Collapse
Affiliation(s)
- Suyao Li
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xiang Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Sisi Li
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ping Xu
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Zhigang Liu
- Centre of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Shihua Yu
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
4
|
Cong SQ, Wang B, Wang H, Zheng QC, Yang QR, Yang RT, Li QL, Wang WS, Cui XJ, Luo FX. Fe 3O 4-lignin@Pd-NPs: A highly active, stable and broad-spectrum nanocomposite for water treatment. Int J Biol Macromol 2024; 256:128233. [PMID: 38040166 DOI: 10.1016/j.ijbiomac.2023.128233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
In this work, we report an environmentally friendly renewable nanocomposite magnetic lignin-based palladium nanoparticles (Fe3O4-lignin@Pd-NPs) for efficient wastewater treatment by decorating palladium nanoparticles without using any toxic reducing agents on the magnetic lignin abstracted from Poplar. The structure of composite Fe3O4-lignin@Pd-NPs was unambiguously confirmed by XRD, SEM, TEM, EDS, FTIR, and Zeta potential. After systematic evaluation of the use and efficiency of the composite to remove toxic organic dyes in wastewater, some promising results were observed as follows: Fe3O4-lignin@Pd-NPs exhibits highly active and efficient performance in the removal of toxic methylene blue (MB) (up to 99.8 %) wastewater in 2 min at different concentrations of MB and different pH values. Moreover, except for toxic MB, the other organic dyes including Rhodamine B (RhB), Rhodamine 6G (Rh6G), and Methyl Orange (MO) can also be removed efficiently by the composite. Finally, the easily recovered composite Fe3O4-lignin@Pd-NPs exhibits well stability and reusability, and catalytic efficiency is maintained well after ten cycles. In conclusion, the lignin-based magnetism Pd composite exhibits powerful potential practical application in industrial wastewater treatment.
Collapse
Affiliation(s)
- Si-Qi Cong
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bo Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Han Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qiu-Cui Zheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qian-Ru Yang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ruo-Tong Yang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qian-Li Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wen-Shu Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiao-Jie Cui
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei-Xian Luo
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
5
|
da Silva BRMG, Arruda POF, Dos Santos JCB, Neves RP, Pereira VRA, de Lima MCA, de Araújo HDA, Marques DSC, da Cruz Filho IJ. In vitro evaluation of antioxidant, cytotoxic, trypanocidal and antimicrobial activities of lignin obtained from Caesalpinia ferrea leaves and its use as an excipient in the release of oxacillin and fluconazole. Int J Biol Macromol 2023; 250:126225. [PMID: 37558029 DOI: 10.1016/j.ijbiomac.2023.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
In this context, the objective of this work was to isolate an alkaline lignin from the leaves of C. ferrea, in addition to investigating different biological activities and its use in the production of releasing tablets in vitro. Initially, the analysis of the composition of the leaves was performed, the contents were: cellulose (33.09 ± 0.3 %), hemicellulose (25.13 ± 0.1 %), lignin (18.29 ± 0.1 %), extractives (17.28 ± 1.0 %) and ash (6.20 ± 0.1 %). The leaves were fractionated to obtain alkaline lignin. The yield of obtaining lignin was 80.12 ± 0.1 %. The obtained lignin was characterized by the techniques: elemental analysis, FTIR, UV/Vis, 2D-NMR, GPC, TGA/DTG, DSC and PY-GC/MS. The results showed that the lignin obtained is of the GSH type, of low molecular weight and thermally stable. The in vitro antioxidant activity was evaluated by different assays promoting results only for DPPH (559.9 ± 0.8 μg/mL) and ABTS (484.1 ± 0.1 μg/mL) being able to promote low antioxidant activity. In addition, it showed low cytotoxicity in normal mammalian cells and promising antitumor and trypanocidal activity. Regarding antimicrobial activity, it was able to inhibit the growth of a strain of Staphylococcus aureus resistant to methicillin, presenting MIC values equal to the standard antibiotic oxacillin. It was also able to inhibit a strain of Candida albicans HAM13 sensitive to fluconazole. In addition, lignin promoted a synergistic effect by promoting a decrease in MIC against these two strains evaluated. Finally, lignin proved to be an excipient with potential for controlled release of antimicrobials.
Collapse
Affiliation(s)
| | - Pedro Otavio Figueredo Arruda
- Department of Antibiotics, Laboratory of Chemistry and Therapeutic Innovation, Federal of Pernambuco, 50670-901, Brazil
| | | | - Rejane Pereira Neves
- Medical Mycology Laboratory, Federal University of Pernambuco, 50670-901, Brazil
| | | | - Maria Carmo Alves de Lima
- Department of Antibiotics, Laboratory of Chemistry and Therapeutic Innovation, Federal of Pernambuco, 50670-901, Brazil
| | | | - Diego Santa Clara Marques
- Department of Antibiotics, Laboratory of Chemistry and Therapeutic Innovation, Federal of Pernambuco, 50670-901, Brazil
| | - Iranildo José da Cruz Filho
- Department of Antibiotics, Laboratory of Chemistry and Therapeutic Innovation, Federal of Pernambuco, 50670-901, Brazil.
| |
Collapse
|
6
|
Hao L, Yu Y, Liang Z, Hou H, Liu X, Chen C, Min D. Deciphering photocatalytic degradation of methylene blue by surface-tailored nitrogen-doped carbon quantum dots derived from Kraft lignin. Int J Biol Macromol 2023; 242:124958. [PMID: 37217057 DOI: 10.1016/j.ijbiomac.2023.124958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Lignin in black liquor can be used to manufacture carbon nanomaterials on a large scale. However, the effect of nitrogen doping on the physicochemical properties and photocatalytic performance of carbon quantum dots (NCQDs) remains to be explored. In this study, NCQDs with different properties were prepared hydrothermally by using kraft lignin as the raw material and EDA as a nitrogen dopant. The amount of EDA added affects the carbonization reaction and surface state of NCQDs. Raman spectroscopy showed that the surface defects increased from 0.74 to 0.84. Photoluminescence spectroscopy (PL) showed that NCQDs had different intensities of fluorescence emission at 300-420 nm and 600-900 nm. Meanwhile, NCQDs can photo-catalytically degrade 96 % of MB under simulated sunlight irradiation within 300 min. After three months of storage, the fluorescence intensity of NCQDs remained above 94 %, showing remarkable fluorescence stability. After four times of recycling, the photo-degradation rate of NCQDs was maintained above 90 %, confirming its outstanding stability. As a result, a clear understanding of the design of carbon-based photo-catalyst fabricated from the waste of the paper-making industry has been gained.
Collapse
Affiliation(s)
- Lingyun Hao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yuanyuan Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Zhanming Liang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hewei Hou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Xi Liu
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, PR China
| | - Changzhou Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
7
|
Mukheja Y, Kaur J, Pathania K, Sah SP, Salunke DB, Sangamwar AT, Pawar SV. Recent advances in pharmaceutical and biotechnological applications of lignin-based materials. Int J Biol Macromol 2023; 241:124601. [PMID: 37116833 DOI: 10.1016/j.ijbiomac.2023.124601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Lignin, a versatile and abundant biomass-derived polymer, possesses a wide array of properties that makes it a promising material for biotechnological applications. Lignin holds immense potential in the biotechnology and pharmaceutical field due to its biocompatibility, high carbon content, low toxicity, ability to be converted into composites, thermal stability, antioxidant, UV-protectant, and antibiotic activity. Notably, lignin is an environmental friendly alternative to synthetic plastic and fossil-based materials because of its inherent biodegradability, safety, and sustainability potential. The most important findings related to the use of lignin and lignin-based materials are reported in this review, providing an overview of the methods and techniques used for their manufacturing and modification. Additionally, it emphasizes on recent research and the current state of applications of lignin-based materials in the biomedical and pharmaceutical fields and also highlights the challenges and opportunities that need to be overcome to fully realize the potential of lignin biopolymer. An in-depth discussion of recent developments in lignin-based material applications, including drug delivery, tissue engineering, wound dressing, pharmaceutical excipients, biosensors, medical devices, and several other biotechnological applications, is provided in this review article.
Collapse
Affiliation(s)
- Yashdeep Mukheja
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Khushboo Pathania
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sangeeta P Sah
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Abhay T Sangamwar
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
8
|
In vitro evaluation of alkaline lignins as antiparasitic agents and their use as an excipient in the release of benznidazole. Int J Biol Macromol 2023; 231:123339. [PMID: 36682648 DOI: 10.1016/j.ijbiomac.2023.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
The Amazon rainforest is considered the largest tropical timber reserve in the world. The management of native forests in the Amazon is one of the most sensitive geopolitical issues today, given its national and international dimension. In this work, we obtained and characterized physicochemical lignins extracted from branches and leaves of Protium puncticulatum and Scleronema micranthum. In addition, we evaluated in vitro its potential as an antioxidant, cytotoxic agent against animal cells and antiparasitic against promastigotes of Leishmania amazonensis, trypomastigotes of T. cruzi and against Plasmodium falciparum parasites sensitive and resistant to chloroquine. The results showed that the lignins obtained are of the GSH type and have higher levels of guaiacyl units. However, they show structural differences as shown by spectroscopic analysis and radar charts. As for biological activities, they showed antioxidant potential and low cytotoxicity against animal cells. Antileishmanial/trypanocidal assays have shown that lignins can inhibit the growth of promastigotes and trypomastigotes in vitro. The lignins in this study showed low anti-Plasmodium falciparum activity against susceptible strains of Plasmodium falciparum and were able to inhibit the growth of the chloroquine-resistant strain. And were not able to inhibit the growth of Schistosoma mansoni parasites. Finally, lignins proved to be promising excipients in the release of benznidazole. These findings show the potential of these lignins not yet studied to promote different biological activities.
Collapse
|
9
|
Ovejero-Pérez A, Rigual V, Domínguez JC, Alonso MV, Oliet M, Rodriguez F. Effect of autohydrolysis and ionosolv treatments on eucalyptus fractionation and recovered lignin properties †. RSC Adv 2023; 13:10338-10348. [PMID: 37020891 PMCID: PMC10068429 DOI: 10.1039/d2ra08013c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Wood fractionation is key for the integral valorization of its three main components. In this sense, recovering the hemicellulosic fraction after the ionosolv treatment of lignocellulosic materials is one of the main drawbacks of this process. Thus, the incorporation of a previous autohydrolyisis step to recover the hemicellulosic sugars before the ionosolv treatment is an interesting approach. The influence of both treatments, autohydrolysis and ionosolv, on the biomass fractions recovery yields was studied by a central composite design of experiments, varying the autohydrolysis temperature in a 175–195 °C range and ionosolv time between 1–5 h. Lignin recovery and cellulose purity were maximized at 184 °C and 3.5 h of autohydrolysis temperature and ionosolv time, respectively. In addition, lignin properties were incorporated to the statistical model, revealing lignin recondensation at severe conditions and a higher influence of the ionosolv treatment on lignin characteristics. These results remarked the importance of studying the effect of both treatments in the whole fractionation process and not each process separately and enhanced the understanding of the treatments combination in a complete fractionation biorefinery approach. This work enhances the understanding of the effect of autohydrolysis and ionosolv treatments combination on fractionation yields and lignin properties.![]()
Collapse
Affiliation(s)
- Antonio Ovejero-Pérez
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Victoria Rigual
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Juan C. Domínguez
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - M. Virginia Alonso
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Mercedes Oliet
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Francisco Rodriguez
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| |
Collapse
|
10
|
Pereira GN, Cesca K, Pereira MAF, Monteiro Rudke CR, Borges OMA, Cubas ALV, Zanella E, Stambuk BU, Poletto P, de Oliveira D. Non‐thermal plasma as an efficient pretreatment to lignocellulosic raw materials. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gabriela N. Pereira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina (UFSC) Florianópolis Santa Catarina Brazil
| | - Karina Cesca
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina (UFSC) Florianópolis Santa Catarina Brazil
| | - Maria Angélica F. Pereira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina (UFSC) Florianópolis Santa Catarina Brazil
| | - Carla Roana Monteiro Rudke
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina (UFSC) Florianópolis Santa Catarina Brazil
| | - Otilia Monica Alves Borges
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina (UFSC) Florianópolis Santa Catarina Brazil
| | - Anelise Leal Vieira Cubas
- Environmental Science Master's Program University of Southern Santa Catarina (Unisul) Palhoça Santa Catarina Brazil
| | - Eduardo Zanella
- Yeast Molecular Biology and Biotechnology Laboratory, Department of Biochemistry Federal University of Santa Catarina Florianópolis Santa Catarina Brazil
| | - Boris U. Stambuk
- Yeast Molecular Biology and Biotechnology Laboratory, Department of Biochemistry Federal University of Santa Catarina Florianópolis Santa Catarina Brazil
| | - Patrícia Poletto
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina (UFSC) Florianópolis Santa Catarina Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina (UFSC) Florianópolis Santa Catarina Brazil
| |
Collapse
|
11
|
Ali DA, Mehanna MM. Role of lignin-based nanoparticles in anticancer drug delivery and bioimaging: An up-to-date review. Int J Biol Macromol 2022; 221:934-953. [PMID: 36089088 DOI: 10.1016/j.ijbiomac.2022.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
Lignin, an aromatic biopolymer, is the second most abundant naturally occurring one after cellulose that has drawn a great deal of interest over the years for its potential uses owing to the presence of high content of phenolic compounds, ecofriendly feature and cost-efficiency in comparison to the synthetic polymers. Nevertheless, with the intention of advancing its development, several efforts have been performed in the direction of utilizing lignin on the nanoscale due to its inimitable properties. The notable absorption capacity, fluorescence emission, biodegradability and non-toxicity of lignin nanoparticles permit its appropriateness as a vehicle for drugs and as a bioimaging material. Moreover, lignin nanoparticles have shown plausible therapeutic effects, such as anticancer, antimicrobial, and antioxidant. The current review sheds light on the recent development in the formulation and anticancer applications of lignin nanoparticles as a drug carrier and as a diagnostic tool. The surface properties of the nanomaterial affect the end product characteristics, hence, factors namely; lignin source, isolation technique, purification and quantitation methods, are discussed in this review. This study represents original work that has not been published elsewhere and that has not been submitted simultaneously for publication elsewhere. The manuscript has been read, revised, and approved by the authors.
Collapse
Affiliation(s)
- Dana A Ali
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
12
|
pH fractionated lignin for the preparation of lignin-based magnetic nanoparticles for the removal of methylene blue dye. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Stanisz M, Klapiszewski Ł, Dobrowolska A, Piasecki A, Czaczyk K, Jesionowski T. The Practical Utility of Imidazolium Hydrogen Sulfate Ionic Liquid in Fabrication of Lignin-Based Spheres: Structure Characteristic and Antibacterial Activity. Front Chem 2022; 10:946665. [PMID: 35873052 PMCID: PMC9298852 DOI: 10.3389/fchem.2022.946665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, lignin-based spherical particles (Lig-IL) with the use of 1-(propoxymethyl)-1H-imidazolium hydrogen sulfate were prepared in different biopolymer and ionic liquid (IL) weight ratios. The application of IL during the preparation of spherical particles is an innovative method, which may be beneficial for further applications. The particles were obtained with the use of the soft-templating method and their chemical, structural and morphological characterization was performed. The spherical shape of products and their size (91–615 nm) was confirmed with the use of scanning electron microscopy (SEM) images and the particle size distribution results. The attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra were analyzed to identify functional groups of all precursors and produced material and it was confirmed, that all materials exhibit characteristic hydroxyl and carboxylic groups, but the presence of carbonyl group was detected. Moreover, the zeta potential analysis was performed to evaluate the electrokinetic behavior of obtained materials. It was confirmed, that all materials are colloidally stable in pH above 4. Produced lignin-based spherical particles were used for evaluation of their antibacterial properties. Particles were tested against Staphylococcus aureus (S. aureus), a gram-positive bacterium, and Escherichia coli (E. coli), a gram-negative one. It was observed, that only the material with the highest addition of IL showed the antibacterial properties against both strains. A reduction of 50% in the number of microorganisms was observed for particles with the addition of hydrogen sulfate ionic liquid in a 1:1 ratio after 1 h. However, all prepared materials exhibited the antibacterial activity against a gram-positive bacterium.
Collapse
Affiliation(s)
- Małgorzata Stanisz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Anna Dobrowolska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Adam Piasecki
- Institute of Materials Science and Engineering, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan, Poland
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
14
|
Recent advances in biological activities of lignin and emerging biomedical applications: A short review. Int J Biol Macromol 2022; 208:819-832. [PMID: 35364209 DOI: 10.1016/j.ijbiomac.2022.03.182] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 12/11/2022]
Abstract
As an abundant biopolymer, lignin gains interest owing to its renewable nature and polyphenolic structure. It possesses many biological activities such as antioxidant activity, antimicrobial activity, and biocompatibility. Studies are being carried out to relate the biological activities to the polyphenolic structures. These traits present lignin as a natural compound being used in biomedical field. Lignin nanoparticles (LNPs) are being investigated for safe use in drug and gene delivery, and lignin-based hydrogels are being explored as wound dressing materials, in tissue engineering and 3D printing. In addition, lignin and its derivatives have shown the potential to treat diabetic disease. This review summarizes latest research results on the biological activities of lignin and highlights potential applications exampled by selective studies. It helps to transform lignin from a waste material into valuable materials and products.
Collapse
|
15
|
Jiang YH, Zhang YQ, Gao C, An QD, Xiao ZY, Zhai SR. Superhydrophobic aerogel membrane with integrated functions of biopolymers for efficient oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Chauhan PS, Agrawal R, Satlewal A, Kumar R, Gupta RP, Ramakumar SSV. Next generation applications of lignin derived commodity products, their life cycle, techno-economics and societal analysis. Int J Biol Macromol 2022; 197:179-200. [PMID: 34968542 DOI: 10.1016/j.ijbiomac.2021.12.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
The pulp and biorefining industries produce their waste as lignin, which is one of the most abundant renewable resources. So far, lignin has been remained severely underutilized and generally burnt in a boiler as a low-value fuel. To demonstrate lignin's potential as a value-added product, we will review market opportunities for lignin related applications by utilizing the thermo-chemical/biological depolymerization strategies (with or without catalysts) and their comparative evaluation. The application of lignin and its derived aromatics in various sectors such as cement industry, bitumen modifier, energy materials, agriculture, nanocomposite, biomedical, H2 source, biosensor and bioimaging have been summarized. This comprehensive review article also highlights the technical, economic, environmental, and socio-economic variable that affect the market value of lignin-derived by-products. The review shows the importance of lignin, and its derived products are a platform for future bioeconomy and sustainability.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- DBT - IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ruchi Agrawal
- DBT - IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India; TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gurugram, India.
| | - Alok Satlewal
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ravindra Kumar
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ravi P Gupta
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India
| | - S S V Ramakumar
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
17
|
Ovejero-Pérez A, Rigual V, Domínguez JC, Alonso MV, Oliet M, Rodriguez F. Organosolv and ionosolv processes for autohydrolyzed poplar fractionation: Lignin recovery and characterization. Int J Biol Macromol 2022; 197:131-140. [PMID: 34971638 DOI: 10.1016/j.ijbiomac.2021.12.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/05/2022]
Abstract
Biomass fractionation plays a major role in the search for competitive biorefineries, where the isolation and recovery of the three woody fractions is key. In this sense, we have used autohydrolyzed hemicellulose-free poplar as feedstock to compare two fractionation processes, organosolv and ionosolv, oriented to lignin recovery. The recovered lignins were then characterize by different techniques (NMR, GPC, TGA). Both treatments were tested at different temperatures to analyze temperature influence on lignin recovery and properties. The highest lignin recovery was obtained with the ionosolv process at 135 °C, reaching a solid yield of ~70%. Lignin characterization showed differences between both treatments. Lignins enriched in C-O linkages and G units were recovered with the organosolv process, where increasing temperature led to highly depolymerized lignins. However, lignins with higher C-C linkages and S units contents were obtained with the ionosolv process, producing more thermically stable lignins. In addition, increasing temperature caused lignin repolymerization when employing ionic liquids as solvents. Therefore, this work outlines the most important differences between ionosolv and organosolv processes for biomass fractionation, focusing on lignin recovery and its properties, which is the first step in order to valorize all biomass fractions.
Collapse
Affiliation(s)
- Antonio Ovejero-Pérez
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain.
| | - Victoria Rigual
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain
| | - Juan Carlos Domínguez
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain
| | - M Virginia Alonso
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain
| | - Mercedes Oliet
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain
| | - Francisco Rodriguez
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
18
|
Pereira GN, Cesca K, Cubas ALV, Bianchet RT, Junior SEB, Zanella E, Stambuk BU, Poletto P, de Oliveira D. Non-thermal plasma as an innovative pretreatment technology in delignification of brewery by-product. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Jędrzejczak P, Collins MN, Jesionowski T, Klapiszewski Ł. The role of lignin and lignin-based materials in sustainable construction - A comprehensive review. Int J Biol Macromol 2021; 187:624-650. [PMID: 34302869 DOI: 10.1016/j.ijbiomac.2021.07.125] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023]
Abstract
The construction industry in the 21st century faces numerous global challenges associated with growing concerns for the environment. Therefore, this review focuses on the role of lignin and its derivatives in sustainable construction. Lignin's properties are defined in terms of their structure/property relationships and how structural differences arising from lignin extraction methods influence its application within the construction sector. Lignin and lignin composites allow the partial replacement of petroleum products, making the final materials and the entire construction sector more sustainable. The latest technological developments associated with cement composites, rigid polyurethane foams, paints and coatings, phenolic or epoxy resins, and bitumen replacements are discussed in terms of key engineering parameters. The application of life cycle assessment in construction, which is important from the point of view of estimating the environmental impact of various solutions and materials, is also discussed.
Collapse
Affiliation(s)
- Patryk Jędrzejczak
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, PL-60965 Poznan, Poland
| | - Maurice N Collins
- School of Engineering and Bernal Institute, University of Limerick, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), University of Limerick, Ireland
| | - Teofil Jesionowski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, PL-60965 Poznan, Poland
| | - Łukasz Klapiszewski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, PL-60965 Poznan, Poland.
| |
Collapse
|
20
|
Keshavarz L, Pishnamazi M, Rao Khandavilli U, Shirazian S, Collins MN, Walker GM, Frawley PJ. Tailoring crystal size distributions for product performance, compaction of paracetamol. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
|
22
|
Pacheco MS, Barbieri D, da Silva CF, de Moraes MA. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. Int J Biol Macromol 2021; 178:504-513. [PMID: 33647337 DOI: 10.1016/j.ijbiomac.2021.02.180] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022]
Abstract
In recent years, orally disintegrating films (ODFs) have been studied as alternative ways for drug administration. They can easily be applied into the mouth and quickly disintegrate, releasing the drug with no need of water ingestion and enabling absorption through the oral mucosa. The ODFs matrices are typically composed of hydrophilic polymers, in which the natural polymers are highlighted since they are polymers extracted from natural sources, non-toxic, biocompatible, biodegradable, and have favorable properties for this application. Besides that, natural polymers such as polysaccharides and proteins can be applied either alone or blended with other synthetic, semi-synthetic, or natural polymers to achieve better mechanical and mucoadhesive properties and fast disintegration. In this review, we analyzed ODFs developed using natural polymers or blends involving natural polymers, such as maltodextrin, pullulan, starch, gelatin, collagen, alginate, chitosan, pectin, and others, to overview the recent publications and discuss how natural polymers can influence ODFs properties.
Collapse
Affiliation(s)
- Murilo Santos Pacheco
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Douglas Barbieri
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Classius Ferreira da Silva
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Mariana Agostini de Moraes
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil.
| |
Collapse
|
23
|
Berardi A, Bisharat L, Quodbach J, Abdel Rahim S, Perinelli DR, Cespi M. Advancing the understanding of the tablet disintegration phenomenon - An update on recent studies. Int J Pharm 2021; 598:120390. [PMID: 33607196 DOI: 10.1016/j.ijpharm.2021.120390] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Disintegration is the de-aggregation of particles within tablets upon exposure to aqueous fluids. Being an essential step in the bioavailability cascade, disintegration is a fundamental quality attribute of immediate release tablets. Although the disintegration phenomenon has been studied for over six decades, some gaps of knowledge and research questions still exist. Three reviews, published in 2015, 2016 and 2017, have discussed the literature relative to tablet disintegration and summarised the understanding of this topic. Yet, since then more studies have been published, adding to the established body of knowledge. This article guides a step forward towards the comprehension of disintegration by reviewing, concisely, the most recent scientific updates on this topic. Initially, we revisit the mechanisms of disintegration with relation to the three most used superdisintegrants, namely sodium starch glycolate, croscarmellose sodium and crospovidone. Then, the influence of formulation, storage, manufacturing and media conditions on disintegration is analysed. This is followed by an excursus on novel disintegrants. Finally, we highlight unanswered research questions and envision future research venues in the field.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| | - Lorina Bisharat
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Germany
| | - Safwan Abdel Rahim
- Department of Pharmaceutical Sciences and Pharmaceutics Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Diego R Perinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Marco Cespi
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| |
Collapse
|
24
|
Application of Aquasolv Lignin in ibuprofen-loaded pharmaceutical formulations obtained via direct compression and wet granulation. Int J Biol Macromol 2021; 174:229-239. [PMID: 33454332 DOI: 10.1016/j.ijbiomac.2021.01.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 11/30/2022]
Abstract
AS (Aquasolv) Lignin produced via Liquid Hot Water Pretreatment and Enzymatic Hydrolysis has shown potential as an active pharmaceutical ingredient and/or excipient in solid dosage forms. Moreover, lignin is safe to consume and presents antioxidant and antidiabetic capacity, properties that can add to solid dosage forms in pharmaceuticals. This work aimed to evaluate the performance of tablets produced via direct compression and wet granulation when lignin is used in combination with commercial excipients. In order to find optimal tablet performance, different lignin formulations were assessed, and the concentrations were given by extreme vertices mixture design (13 formulations). The blends were composed of AS Lignin, Microcrystalline Cellulose, and Lactose monohydrate and the optimized blend was found to be 14.53 w/w% of disintegrant, 26.57 w/w% of binder and 58.9 w/w% of AS lignin. This proportion was further used to evaluate the performance of lignin-based tablets in drug release, using Ibuprofen as a drug model (50 w/w% and 70 w/w%) and for comparison of direct compression with wet granulation. Direct compressed tablets resulted in higher drug dissolution rates when compared with wet granulation, nevertheless; both tableting techniques showed promising results for lignin. More than 5 formulations tested in this work are compliant with International Pharmacopoeia regulations for solid dosage pharmaceutical forms, thus AS Lignin shows potential to be used as an excipient in pharmaceutical formulations. INDUSTRIAL RELEVANCE: Industrially, AS Lignin appears as promising excipient in the pharmaceutical technologies as well as boost in the biorefining technologies in the following years. Lignin produced is free of sulfur, can be labelled as clean and environmentally-friendly and in this study, was proven this non-cytotoxic AS lignin can be used for excipients and drug carriers. The findings in this paper showed the use of product formulation for life science purposes, thus stressing one of possibilities for lignin valorization in biorefineries.
Collapse
|
25
|
Pishnamazi M, Hafizi H, Pishnamazi M, Marjani A, Shirazian S, Walker GM. Controlled release evaluation of paracetamol loaded amine functionalized mesoporous silica KCC1 compared to microcrystalline cellulose based tablets. Sci Rep 2021; 11:535. [PMID: 33436819 PMCID: PMC7804127 DOI: 10.1038/s41598-020-79983-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/15/2020] [Indexed: 01/11/2023] Open
Abstract
In the pharmaceutical manufacturing, drug release behavior development is remained as one of the main challenges to improve the drug effectiveness. Recently, more focus has been done on using mesoporous silica materials as drug carriers for prolonged and superior control of drug release in human body. In this study, release behavior of paracetamol is developed using drug-loaded KCC-1-NH2 mesoporous silica, based on direct compaction method for preparation of tablets. The purpose of this study is to investigate the utilizing of pure KCC-1 mesoporous silica (KCC-1) and amino functionalized KCC-1 (KCC-1-NH2) as drug carriers in oral solid dosage formulations compared to common excipient, microcrystalline cellulose (MCC), to improve the control of drug release rate by manipulating surface chemistry of the carrier. Different formulations of KCC-1 and KCC-NH2 are designed to investigate the effect of functionalized mesoporous silica as carrier on drug controlled-release rate. The results displayed the remarkable effect of KCC-1-NH2 on drug controlled-release in comparison with the formulation containing pure KCC-1 and formulation including MCC as reference materials. The pure KCC-1 and KCC-1-NH2 are characterized using different evaluation methods such as FTIR, SEM, TEM and N2 adsorption analysis.
Collapse
Affiliation(s)
- Marieh Pishnamazi
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Hamid Hafizi
- Department of Chemical Sciences, Bernal Institute, Synthesis and Solid-State Pharmaceutical Centre (SSPC), University of Limerick, Limerick, Ireland
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, Synthesis and Solid-State Pharmaceutical Centre (SSPC), University of Limerick, Limerick, Ireland
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- The Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | - Azam Marjani
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Saeed Shirazian
- Department of Chemical Sciences, Bernal Institute, Synthesis and Solid-State Pharmaceutical Centre (SSPC), University of Limerick, Limerick, Ireland
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
- Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, 454080, Russian Federation
| | - Gavin M Walker
- Department of Chemical Sciences, Bernal Institute, Synthesis and Solid-State Pharmaceutical Centre (SSPC), University of Limerick, Limerick, Ireland
| |
Collapse
|
26
|
Xue B, Yang Y, Tang R, Xue D, Sun Y, Li X. Efficient dissolution of lignin in novel ternary deep eutectic solvents and its application in polyurethane. Int J Biol Macromol 2020; 164:480-488. [DOI: 10.1016/j.ijbiomac.2020.07.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
|
27
|
|
28
|
|
29
|
Sustainable antimicrobial modified chitosan and its nanoparticles hydrogels: Synthesis and characterization. Int J Biol Macromol 2020; 162:1388-1397. [DOI: 10.1016/j.ijbiomac.2020.08.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 11/19/2022]
|
30
|
Cu/N doped lignin for highly selective efficient removal of As(v) from polluted water. Int J Biol Macromol 2020; 161:147-154. [DOI: 10.1016/j.ijbiomac.2020.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
|
31
|
Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020; 8:8992-9027. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan-52900, Israel.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL-33805, USA
| | - Reza Abolhassani
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden and Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Horst-Günter Rubahn
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| |
Collapse
|
32
|
Liu R, Dai L, Xu C, Wang K, Zheng C, Si C. Lignin-Based Micro- and Nanomaterials and their Composites in Biomedical Applications. CHEMSUSCHEM 2020; 13:4266-4283. [PMID: 32462781 DOI: 10.1002/cssc.202000783] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Indexed: 05/13/2023]
Abstract
Lignin, as the most abundant aromatic renewable biopolymer in nature, has long been regarded as waste and simply discarded from the pulp and paper industry. In recent years, with many breakthroughs in lignin chemistry, pretreatment, and processing techniques, a lot of the inherent bioactivities of lignin, including antioxidant activities, antimicrobial activities, biocompatibilities, optical properties, and metal-ion chelating and redox activities, have been discovered and this has opened a new field not only for lignin-based materials but also for biomaterials. In this Review, the biological activities of lignin and drug/gene delivery and bioimaging applications of various types of lignin-based material are summarized. In addition, the challenges and limitations of lignin-based materials encountered during the development of biomedical applications are also discussed.
Collapse
Affiliation(s)
- Rui Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, 20500, Finland
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
| | - Chunlin Xu
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, 20500, Finland
| | - Kai Wang
- International Medicine Centre, Tianjin Hospital, 506 Jiefang South Road, Tianjin, 300211, China
| | - Chunyang Zheng
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin, 300384, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
| |
Collapse
|
33
|
Wang X, Hou Q, Zhang X, Zhang Y, Liu W, Xu C, Zhang F. Color evolution of poplar wood chips and its response to lignin and extractives changes in autohydrolysis pretreatment. Int J Biol Macromol 2020; 157:673-679. [PMID: 31794829 DOI: 10.1016/j.ijbiomac.2019.11.224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022]
Abstract
Combining chemi-mechanical pulping with autohydrolysis pretreatment is an efficient and value-added utilization approach for lignocellulosic biomass in paper industry. To further promote the utilization of autohydrolyzed biomass in chemi-mechanical pulping, the color evolution of poplar wood chips in autohydrolysis pretreatment and its chromogenic mechanism were investigated by using CIELab color system, FT-IR, NMR and GPC. The results showed that the total color difference ΔE* increased obviously, which were remarkable as the combined hydrolysis factor (CHF) increased. The lignin content led to a more significant influence on the color of poplar wood chips than the extractives. The autohydrolysis pretreatment with a higher CHF accelerated the degradation and subsequent condensation of lignin, resulting in the formation of chromophoric groups, such as Hibbert ketone, quinones and quinone methides. It is of great significance for biomass refinery and paper industry to reveal the color evolution of poplar wood chips caused by autohydrolysis pretreatment from the point of view of chemical components' structure.
Collapse
Affiliation(s)
- Xiaodi Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Xin Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yongchao Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China; Johan Gadolin Process Chemistry Centre, C/O Laboratory of Wood and Paper Chemistry, Åbo Akademi University, Turku FI-20500, Finland
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Chunlin Xu
- Johan Gadolin Process Chemistry Centre, C/O Laboratory of Wood and Paper Chemistry, Åbo Akademi University, Turku FI-20500, Finland
| | - Fangdong Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
34
|
Tian Q, Wu T, Huang C, Fang G, Zhou J, Ding L. VS 2 and its doped composition: Catalytic depolymerization of alkali lignin for increased bio-oil production. Int J Biol Macromol 2020; 156:94-102. [PMID: 32289419 DOI: 10.1016/j.ijbiomac.2020.04.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
VS2 spheres and VS2 sheets with doped compositions (Mo, Ag and graphite) were successfully prepared by one-step hydrothermal method and characterized by different techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption isotherms. Catalysts were applied for the depolymerization of alkali lignin. VS2 spheres exhibited lower yield of degraded lignin and bio-oil than those with VS2 sheets and VS2 flowers heated to 250 °C and held for 1.5 h with 2.0 MPa H2. The catalytic depolymerization performance was markedly affected by the dopant in the VS2 sheets, with the highest degraded lignin yield of 81.22%, achieved over 5 wt% Ag-VS2 at 290 °C under 2.0 MPa H2 for 1.5 h, yielding 61.23% bio-oil. The VS2-based catalysts show excellent selectivity in the interruption of the lignin structure and target production of bio-oil. The bio-oil showed that the relevant contents of a phenolic-type compound changes significantly according to the dopant in the VS2 catalyst.
Collapse
Affiliation(s)
- Qingwen Tian
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Nanjing Forestry University, Nanjing 210037, China.
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Laibao Ding
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China.
| |
Collapse
|
35
|
Karmanov AP, Kocheva LS, Belyy VA. Topological structure and antioxidant properties of macromolecules of lignin of hogweed Heracleum sosnowskyi Manden. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
36
|
Steinmetz V, Villain-Gambier M, Klem A, Ziegler I, Dumarcay S, Trebouet D. Lignin Carbohydrate Complexes structure preserved throughout downstream processes for their valorization after recovery from industrial process water. Int J Biol Macromol 2020; 157:726-733. [DOI: 10.1016/j.ijbiomac.2019.11.238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/04/2023]
|
37
|
Acidic depolymerization vs ionic liquid solubilization in lignin extraction from eucalyptus wood using the protic ionic liquid 1-methylimidazolium chloride. Int J Biol Macromol 2020; 157:461-469. [DOI: 10.1016/j.ijbiomac.2020.04.194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 02/03/2023]
|
38
|
Structural characterization of the lignin from Saxifraga (Saxifraga oppositifolia L.) stems. Int J Biol Macromol 2020; 155:656-665. [DOI: 10.1016/j.ijbiomac.2020.03.258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 11/15/2022]
|
39
|
Gao S, Cheng Z, Zhou X, Liu Y, Chen R, Wang J, Wang C, Chu F, Xu F, Zhang D. Unexpected role of amphiphilic lignosulfonate to improve the storage stability of urea formaldehyde resin and its application as adhesives. Int J Biol Macromol 2020; 161:755-762. [PMID: 32561279 DOI: 10.1016/j.ijbiomac.2020.06.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
As the second-largest natural polymer, the utilization of lignin for practical applications has attracted increasing attention. In this study, lignosulfonate was employed to enhance the storage stability of urea formaldehyde (UF) resins. Cryo-scanning electron microscopy was firstly used to observe the influence of lignosulfonate addition on the colloidal morphology of UF resin. Moreover, adding lignosulfonate at different stages during the UF resins synthesis was also investigated to reveal its effect on storage stability. The potential interaction between lignosulfonate and UF resins was then analyzed via FT-IR, 13C CPMAS NMR, and zeta potential. It has been observed that lignosulfonate could increase the electrostatic repulsion of UF resins to avoid aging. No chemical reaction between UF resins and lignosulfonate was observed. After the elucidation of potential interaction, the effect of lignosulfonate on the curing process, thermal stability and adhesive performance of UF resins was systematically evaluated. Finally, as adhesives to fabricate eucalyptus plywood, the shear strength and formaldehyde release of UF resins with 20% addition of lignosulfonate could reach 0.88 MPa and 0.12 mg/L, respectively. Due to the excellent performance, low cost and wide availability of lignosulfonate, it might be industrially used as a stabilizer in the UF resins production.
Collapse
Affiliation(s)
- Shishuai Gao
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, 210042, Jiangsu, China; College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zenghui Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Xi Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Yupeng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Riqing Chen
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jifu Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Feng Xu
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, 210042, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
40
|
Lignin-mediated green synthesis of AgNPs in carrageenan matrix for wound dressing applications. Int J Biol Macromol 2020; 159:859-869. [PMID: 32445819 DOI: 10.1016/j.ijbiomac.2020.05.145] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/07/2023]
Abstract
Carrageenan-based functional wound dressing materials were prepared through a one-pot green synthesis of silver nanoparticles (AgNPs) using lignin as a reducing and capping agent in the carrageenan matrix cross-linked with divalent cations such as CaCl2, CuCl2, and MgCl2. The wound healing efficacy of the hydrogel film was evaluated using Sprague-Dawley rats. Crosslinking with divalent cations improved the physical properties of carrageenan-based hydrogels containing AgNPs such as strength, flexibility, swelling ratio, and release rate of Ag ions depending on the type of crosslinking agent used. The carrageenan-based hydrogels were biocompatible against the mouse fibroblast cell line (L929 cell line). Carra/Lig/AgNPs/MgCl2 hydrogel significantly healed the wounds in Sprague-Dawley rats within two weeks, reducing the wound area to <3%, which was further confirmed by histological analysis with the epidermis and mature glands. Carrageenan-based multifunctional hydrogels have a high potential for wound dressing applications.
Collapse
|
41
|
Effects of coupling agent on antioxidant properties and structure of PP/cotton stalk lignin composites. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2020. [DOI: 10.2478/pjct-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
In this paper, the effects of coupling agent and lignin extracted from waste cotton stalks in Xinjiang on thermal-oxygen aging properties of polypropylene (PP) composites were studied. The melt index test and indoor thermal oxygen aging test was carried out on the samples treated with coupling agent. The mechanical properties, surface micromorphology, rheological properties and element composition of the materials before and after 30 days of aging were studied. The results showed that the titanate coupling agent was the best for improving the melt index and mechanical properties of PP/cotton stalk lignin composites. After the 30-day thermal oxygen aging test, the samples with 2% lignin had the best impact strength and retention rate of fracture elongation, reaching 68.9% and 77.3% respectively. The sample with 3% lignin content had the smoothen surface, no crack appeared. After aging, the increase of C=O was the least, and the crystal peak area decreased less.
Collapse
|
42
|
Opuntia ficus-indica L. Mill Residues—Properties and Application Possibilities in Food Supplements. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, industry has been focusing on the development of new products made from food by-products in order to reduce and take advantage of food wastes. The objective of this study was to evaluate tablet formulations developed by mixing two commercial excipients, microcrystalline cellulose (M) and α-lactose-monohydrate (L), added with powder from residues (mesocarp and pericarp) of green and red (G and R) cactus pear fruit (Opuntia ficus-indica L. Mill), having the following formulations: green with microcrystalline cellulose (GM), green with lactose (GL), red with microcrystalline cellulose (RM), and red with lactose (RL). The results showed lower disintegration times for the tablets with microcrystalline cellulose. The fiber functional properties presented good values for lipid and water holding capacity. There was a higher total phenolic content (TPC) in formulations with green cactus pear residue powder with microcrystalline cellulose and lactose (GM and GL, respectively), but the DPPH and ferric reducing/antioxidant power (FRAP) values were higher in the formulations with red cactus pear residues (RM and RL), while ABTS values were similar among all formulations. In conclusion, tablets made from Opuntia residues are proposed as a product of interest for the food supplement industry because of the good quality parameters and the functional and antioxidant properties that they provide.
Collapse
|
43
|
Wang H, Wang Y, Fu F, Qian Y, Xiao Y, Yang D, Qiu X. Controlled preparation of lignin/titanium dioxide hybrid composite particles with excellent UV aging resistance and its high value application. Int J Biol Macromol 2020; 150:371-379. [DOI: 10.1016/j.ijbiomac.2019.12.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
|
44
|
Chen K, Lei L, Lou H, Niu J, Yang D, Qiu X, Qian Y. High internal phase emulsions stabilized with carboxymethylated lignin for encapsulation and protection of environmental sensitive natural extract. Int J Biol Macromol 2020; 158:430-442. [PMID: 32320804 DOI: 10.1016/j.ijbiomac.2020.04.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Oil-in-water (O/W) high internal phase emulsions (HIPEs) are widely used in foods, pharmaceuticals and cosmetics due to the high drug loading ratio, specific rheological behaviors and long shelf life. However, protective performance of active components within HIPEs maintains a low level. Herein, a series of carboxymethylated enzymatic hydrolysis lignin (EHL-CM-x) were synthesized by nucleophilic substitution and applied as macromolecular surfactant to stabilize the O/W HIPEs. It was found that EHL-CM-x combined with a small dosage of alkyl polyglycoside (APG) are able to stabilize HIPEs with 87 vol% soybean oil under neutral condition, which could be recognized as the highest internal phase reported in foods and pharmaceuticals. As a bioactive compound carrier, such EHL-CM-x stabilized HIPEs enable to provide outstanding UV, thermal and oxidation protection for sensitive natural extracts. The residual drug level obtained in this work is more than two times other gliadin/chitosan hybrid particles and sulfomethylated lignin stabilized HIPEs after UV irradiation. In vitro experiments showed that the minimum inhibitory concentration of curcumin within HIPEs against S. aureus and E. coli was 3.13 mg/mL and 12.5 mg/mL, respectively. Such lignin stabilized HIPEs could be potentially used in various areas, especially those with high stability and biosafety requirements.
Collapse
Affiliation(s)
- Kai Chen
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Lei Lei
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Juntao Niu
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China.
| | - Yong Qian
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
45
|
Xu C, Liu F, Alam MA, Chen H, Zhang Y, Liang C, Xu H, Huang S, Xu J, Wang Z. Comparative study on the properties of lignin isolated from different pretreated sugarcane bagasse and its inhibitory effects on enzymatic hydrolysis. Int J Biol Macromol 2020; 146:132-140. [DOI: 10.1016/j.ijbiomac.2019.12.270] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023]
|
46
|
Lignin assisted Pickering emulsion polymerization to microencapsulate 1-tetradecanol for thermal management. Int J Biol Macromol 2020; 146:1-8. [DOI: 10.1016/j.ijbiomac.2019.12.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/05/2023]
|
47
|
Antibacterial phase change microcapsules obtained with lignin as the Pickering stabilizer and the reducing agent for silver. Int J Biol Macromol 2020; 144:624-631. [DOI: 10.1016/j.ijbiomac.2019.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/25/2023]
|
48
|
Song B, Liang H, Sun R, Peng P, Jiang Y, She D. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int J Biol Macromol 2020; 144:219-230. [DOI: 10.1016/j.ijbiomac.2019.12.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/23/2023]
|
49
|
Karmanov AP, Kanarsky AV, Kanarskaya ZA, Kocheva LS, Semenov EI, Bogdanovich NI, Belyy VA. In vitro adsorption-desorption of aflatoxin B1 on Pepper's lignins isolated from grassy plants. Int J Biol Macromol 2020; 144:111-117. [DOI: 10.1016/j.ijbiomac.2019.12.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
|
50
|
Cassales A, Ramos LA, Frollini E. Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation. Int J Biol Macromol 2020; 145:28-41. [DOI: 10.1016/j.ijbiomac.2019.12.173] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
|