1
|
Anceschi A, Patrucco A, Bhavsar P, Zoccola M, Tessari M, Erbazzi L, Zamboni P. Keratose Self-Cross-Linked Wound Dressing for Iron Sequestration in Chronic Wounds. ACS OMEGA 2023; 8:30118-30128. [PMID: 37636950 PMCID: PMC10448490 DOI: 10.1021/acsomega.3c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Chronic wound diseases affect a large part of the world population, and therefore, novel treatments are becoming fundamental. People with chronic wounds show high iron and protease levels due to genetic disorders or other comorbidities. Since it was demonstrated that iron plays an important role in chronic wounds, being responsible for oxidative processes (ROS generation), while metalloproteinases prevent wound healing by literally "eating" the growing skin, it is crucial to design an appropriate wound dressing. In this paper, a novel bioactive dressing for binding iron in chronic wounds has been produced. Wool-derived keratose wound dressing in the form of films has been prepared by casting an aqueous solution of keratoses. These films are water-soluble; therefore, in order to increase their stability, they have been made insoluble through a thermal cross-link treatment. Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA) analyses clarified the structure and the properties of the keratose wound dressing films. The capability of this new biomaterial in iron sequestration has been investigated by testing the adsorption of Fe3+ by inductively coupled plasma-optical emission spectrometry (ICP-OES). The results suggest that the keratose cross-linked films can adsorb a large amount of iron (about 85% of the average amount usually present in chronic wounds) following pseudo-second-order kinetics and an intraparticle diffusion model, thus opening new perspectives in chronic wound care. Furthermore, the QSAR Toolbox was applied for conducting in silico tests and for predicting the chemical behavior of the C-Ker-film. All of the data suggest that the keratose bioactive dressing can significantly contribute to wound healing by mechanisms such as iron depletion, acting as a radical scavenger, diminishing the proteolytic damage, acting as a substrate in place of skin, and, finally, promoting tissue regeneration.
Collapse
Affiliation(s)
- Anastasia Anceschi
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Alessia Patrucco
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Parag Bhavsar
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Marina Zoccola
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Mirko Tessari
- Vascular
Diseases Center, University of Ferrara, 44121 Ferrara, Italy
| | - Luca Erbazzi
- Vascular
Diseases Center, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Zamboni
- Vascular
Diseases Center, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Atbir A, Taibi M, Aouan B, Khabbazi A, Ansari O, Cherkaoui M, Cherradi T. Physicochemical and thermomechanical performances study for Timahdite sheep wool fibers application in the building's insulation. Sci Rep 2023; 13:5038. [PMID: 36977806 PMCID: PMC10050421 DOI: 10.1038/s41598-023-31516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The present research focuses on the development and thermomechanical characterization of unfired solid bricks based on clay (white and red) and Timahdite sheep wool, which are local, durable, abundant, and economical materials. As this clay material is incorporated with sheep wool in the form of yarn multi-layers in opposite directions. It achieves good thermal and mechanical performance and a lightness of these bricks as acquired progress. This new method of reinforcement offers significant thermo-mechanical performance for the composite for thermal insulation in sustainable buildings. Several physicochemical analyses to characterize the raw materials were used. Thermomechanical measurements to characterize the elaborated materials. The wool yarn effect was significant on the mechanical behavior of the developed materials at 90 days, with flexural strength from 18 to 56% for the white clay. And 8-29% for the red one. Decrease in compressive strength from 9 to 36% for the white clay and 5-18% for the red one. These mechanical performances are accompanied by thermal conductivity gain ranging from 4 to 41% for the white and 6-39% for the red for wool fractions: 6-27 g. This green multi-layered bricks from abundant local materials with optimal thermo-mechanical properties, qualified for the intended use for thermal insulation and energy efficiency in the construction and development of local economies.
Collapse
Affiliation(s)
- Aziza Atbir
- GCC, Mohammadia School of Engineering, Mohammed V University in Rabat, EMI Rabat, Avenue Ibn Sina B.P. 765, Agdal, Rabat, Morocco.
| | - Mhamed Taibi
- Centre des Sciences des Matériaux, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques (LPCMIO), Ecole Normale Supérieure (E.N.S), Mohammed V University, Rabat, Morocco
| | - Badr Aouan
- Centre des Sciences des Matériaux, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques (LPCMIO), Ecole Normale Supérieure (E.N.S), Mohammed V University, Rabat, Morocco
| | - Abdelhamid Khabbazi
- EMDD_CERNE2D, Mohammed V University in Rabat, EST Salé, 227 Avenue Prince Héritier, Salé, Morocco
| | - Omar Ansari
- Energy Research Center, Thermal and Energy Research Team, ENSAM, Mohammed V University, Rabat, Morocco
| | - Moha Cherkaoui
- Laboratory of Applied Mathematics and Computer Science Decision, National Graduate Engineering School of Mines, Rabat, Morocco
| | - Toufik Cherradi
- GCC, Mohammadia School of Engineering, Mohammed V University in Rabat, EMI Rabat, Avenue Ibn Sina B.P. 765, Agdal, Rabat, Morocco
| |
Collapse
|
3
|
Nano/micro-formulations of keratin in biocomposites, wound healing and drug delivery systems; recent advances in biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Zheng S, Han J, Jin X, Ye Q, Zhou J, Duan P, Liu M. Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 60:22711-22716. [PMID: 34411386 DOI: 10.1002/anie.202108661] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Indexed: 01/05/2023]
Abstract
Self-assembled chiroptical materials have attracted considerable attention due to their great applications in wide fields. During the chiral self-assembly, it remains unknown how achiral molecules can affect the assembly process and their final chiroptical performance. Herein, we report an achiral molecule directed chiral self-assembly via halogen bonds, exhibiting not only an unprecedented chiral fractal architecture but also significantly amplified circularly polarized luminescence (CPL). Two axially chiral emitters with halogen bond sites co-assemble with an achiral 1,4-diiodotetrafluorobenzene (F4 DIB) and well-ordered chiral fractal structures with asymmetry amplification are obtained. The enhancement of the dissymmetry factors of the assemblies was up to 0.051 and 0.011, which was approximately 100 folds than those of the corresponding molecules. It was found that both the design of the chiral emitter and the highly directional halogen bond played an important role in hierarchically chirality transfer from chiral emitters to the micrometer scale chiral fractal morphology and amplified dissymmetry factors. We hope that this strategy can give a further insight into the fabrication of structurally unique featured highly efficient chiroptical materials.
Collapse
Affiliation(s)
- Shuyuan Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan Province, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Qiang Ye
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan Province, P. R. China
| | - Jin Zhou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No.2, ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zheng S, Han J, Jin X, Ye Q, Zhou J, Duan P, Liu M. Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108661] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shuyuan Zheng
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province School of Chemistry Xiangtan University Xiangtan 411105 Hunan Province P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Qiang Ye
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province School of Chemistry Xiangtan University Xiangtan 411105 Hunan Province P. R. China
| | - Jin Zhou
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences No.2, ZhongGuanCun BeiYiJie Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
6
|
Wongnarat C, Srihanam P. Biomaterial microparticles of keratose/collagen blend prepared by a water-in-oil emulsification–diffusion method. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2020.1789904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chuleerat Wongnarat
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry, Faculty of Science, Creative and Innovation Chemistry Research Unit, Mahasarakham University, Mahasarakham, Thailand
| | - Prasong Srihanam
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry, Faculty of Science, Creative and Innovation Chemistry Research Unit, Mahasarakham University, Mahasarakham, Thailand
| |
Collapse
|
7
|
|
8
|
Zhao Z, Song C, Zhou J, Hu R, Xiao H, Liu Y, Lu M. An eco‐friendly method based on the self‐glue effect of keratins for preparing Fe
3
O
4
‐coated wool. J Appl Polym Sci 2020. [DOI: 10.1002/app.49179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhenyun Zhao
- College of Textile & GarmentSouthwest University Chongqing China
| | - Chi Song
- Department of Life Science and TechnologyChangshu Institute of Technology Changshu Jiangsu China
| | - Jing Zhou
- College of Textile & GarmentSouthwest University Chongqing China
| | - Ruimin Hu
- College of Textile & GarmentSouthwest University Chongqing China
| | - Hang Xiao
- College of Textile & GarmentSouthwest University Chongqing China
- State Key Laboratory of Silkworm Genome BiologySouthwest University Chongqing China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile Chongqing China
| | - Yiping Liu
- College of Textile & GarmentSouthwest University Chongqing China
- State Key Laboratory of Silkworm Genome BiologySouthwest University Chongqing China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile Chongqing China
| | - Ming Lu
- College of Textile & GarmentSouthwest University Chongqing China
- State Key Laboratory of Silkworm Genome BiologySouthwest University Chongqing China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile Chongqing China
| |
Collapse
|
9
|
Zhang C, Xia L, Zhang J, Liu X, Xu W. Utilization of waste wool fibers for fabrication of wool powders and keratin: a review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00030-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Villamizar-Sarmiento MG, Moreno-Villoslada I, Martínez S, Giacaman A, Miranda V, Vidal A, Orellana SL, Concha M, Pavicic F, Lisoni JG, Leyton L, Oyarzun-Ampuero FA. Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E944. [PMID: 31261871 PMCID: PMC6669755 DOI: 10.3390/nano9070944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
We report on the design, development, characterization, and a preliminary cellular evaluation of a novel solid material. This material is composed of low-molecular-weight hyaluronic acid (LMWHA) and polyarginine (PArg), which generate aqueous ionic nanocomplexes (INC) that are then freeze-dried to create the final product. Different ratios of LMWHA/PArg were selected to elaborate INC, the size and zeta potential of which ranged from 100 to 200 nm and +25 to -43 mV, respectively. Turbidimetry and nanoparticle concentration analyses demonstrated the high capacity of the INC to interact with increasing concentrations of LMWHA, improving the yield of production of the nanostructures. Interestingly, once the selected formulations of INC were freeze-dried, only those comprising a larger excess of LMWHA could form reproducible sponge formulations, as seen with the naked eye. This optical behavior was consistent with the scanning transmission electron microscopy (STEM) images, which showed a tendency of the particles to agglomerate when an excess of LMWHA was present. Mechanical characterization evidenced low stiffness in the materials, attributed to the low density and high porosity. A preliminary cellular evaluation in a fibroblast cell line (RMF-EG) evidenced the concentration range where swollen formulations did not affect cell proliferation (93-464 µM) at 24, 48, or 72 h. Considering that the reproducible sponge formulations were elaborated following inexpensive and non-contaminant methods and comprised bioactive components, we postulate them with potential for biomedical purposes. Additionally, this systematic study provides important information to design reproducible porous solid materials using ionic nanocomplexes.
Collapse
Affiliation(s)
- María Gabriela Villamizar-Sarmiento
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Ignacio Moreno-Villoslada
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja, Casilla 567, Valdivia 5090000, Chile
| | - Samuel Martínez
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Annesi Giacaman
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
- Jeffrey Modell Center of Diagnosis and Research in Primary Immunodeficiencies. Faculty of Medicine, University of La Frontera, Temuco 4780000, Chile
| | - Victor Miranda
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Alejandra Vidal
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sandra L Orellana
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja, Casilla 567, Valdivia 5090000, Chile
| | - Miguel Concha
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Francisca Pavicic
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Judit G Lisoni
- NM MultiMat, Instituto de Ciencias Físicas y Matemáticas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Lisette Leyton
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile.
| | - Felipe A Oyarzun-Ampuero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| |
Collapse
|