1
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
2
|
Tan X, Huang Y, Muhammad U, Song C, Zhang S, Xia X, Feng Y, Guo L, Wang G, He Z, Xie F. Dissolution and regeneration of starch in hydroxyl-functionalized ionic liquid aqueous solution. Int J Biol Macromol 2024; 264:130775. [PMID: 38467210 DOI: 10.1016/j.ijbiomac.2024.130775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
There have been continuous quests for suitable solvents for starch, given the importance of effective starch dissolution in its modification and subsequent materials production. In light of this, the potential of hydroxyl-functionalized ionic liquid (IL) as a promising solvent for starch was investigated. Within this study, a hydroxyl-functionalized IL 1-(2,3-dihydroxypropyl)-3-methylimidazole chloride ([Dhpmim][Cl]) was synthesized, and the dissolution of starch in this IL and its aqueous solutions was examined. Starch (5.35 wt%) was completely dissolved in [Dhpmim][Cl] within 2 h at 100 °C. The solubility of starch in [Dhpmim][Cl]-water mixtures initially increased and then decreased with rising water content. The optimal ratio was found to be 1:9 (wt/wt) water:[Dhpmim][Cl], achieving the highest solubility at 9.28 wt%. Density functional theory (DFT) simulations elucidated the possible interactions between starch and solvents. After dissolution and regeneration in the 1:9 water:[Dhpmim][Cl] mixture, starch showed no discernible change in the molecular structure, with no derivatization reaction observed. Regenerated starch exhibited a transformation in crystalline structure from A-type to V-type, and its relative crystallinity (12.4 %) was lower than that of native starch (25.2 %), resulting in decreased thermal stability. This study suggests that the hydroxyl-functionalized IL, [Dhpmim][Cl], and its aqueous solutions serve as effective solvents for starch dissolution.
Collapse
Affiliation(s)
- Xiaoyan Tan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yitao Huang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Umair Muhammad
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Chao Song
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming 650302, China
| | - Sai Zhang
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen 518116, China
| | - Xueshan Xia
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming 650302, China
| | - Yue Feng
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming 650302, China
| | - Ling Guo
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming 650302, China
| | - Guowei Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
3
|
Janik W, Jakubski Ł, Kudła S, Dudek G. Modified polysaccharides for food packaging applications: A review. Int J Biol Macromol 2024; 258:128916. [PMID: 38134991 DOI: 10.1016/j.ijbiomac.2023.128916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Development of new food packaging materials is crucial to reduce the use of single-use plastics and to limit their destructive impact on the environment. Polysaccharides provide an alternative solution to this problem. This paper summarizes and discusses recent research results on the potential of modifying polysaccharides as materials for film and coating applications. Modifications of polysaccharides significantly affect their properties, as well as their application usability. Although modifications of biopolymers for packaging applications have been widely studied, polysaccharides have attracted little attention despite being a prospective, environmentally friendly, and economically viable packaging alternative. Therefore, this paper discusses approaches to the development of biodegradable, polysaccharide-based food packaging materials and focuses on modifications of four polysaccharides, such as starch, chitosan, sodium alginate and cellulose. In addition, these modifications are presented not only in terms of the selected polysaccharide, but also in terms of specific properties, i.e. hydrophilic, barrier and mechanical properties, of polysaccharides. Such a presentation of results makes it much easier to select the modification method to improve the unsatisfactory properties of the material. Moreover, very often it happens that the applied modification improves one and worsens another property, which is also presented in this review.
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; Department of Physical Chemistry and Technology of Polymers, Joint Doctoral School, Silesian University of Technology, Akademicka 2a, 44-100 Gliwice, Poland.
| | - Łukasz Jakubski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Stanisław Kudła
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
4
|
Effects of water/ionic liquid ratios on the physicochemical properties of high amylose maize starch-lauric acid complex. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Effect of oil modification on the multiscale structure and gelatinization properties of crosslinked starch and their relationship with the texture and microstructure of surimi/starch composite gels. Food Chem 2022; 391:133236. [DOI: 10.1016/j.foodchem.2022.133236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/13/2022] [Accepted: 05/15/2022] [Indexed: 11/19/2022]
|
6
|
A facile method of functional derivatization based on starch acetoacetate. Carbohydr Polym 2022; 289:119468. [DOI: 10.1016/j.carbpol.2022.119468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
|
7
|
One-Step Synthesis of Cross-Linked Esterified Starch and Its Properties. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cross-linked esterified starch (CES) was prepared using a one-step method, where maize starch was selected as the raw material, sodium trimetaphosphate as the cross-linking agent, and acetic anhydride as the esterifying agent, respectively. A response surface experiment was systematically conducted for analyzing the correlation of the experimental variables (cross-linked temperature, pH, reaction time, sodium trimetaphosphate and acetic anhydride dosage) and properties of the product (peak and final viscosity). The Brabender viscosity, freeze-thaw stability, shearing resistance, and acid tolerance of the cross-linked acetylated dual modified starch were studied under different conditions of crosslinking degree and acetyl content. Meanwhile, the granular structure and morphology of the modified starch were analyzed. The results indicated that: after cross-linked acetylated dual modification, the starch had a distinct birefringence and granular structure, along with the creation of new carbonyl groups. The low degree of crosslinking and high acetyl contents were beneficial to the viscosity, which was significantly increased at both low and high temperatures. Moreover, the freeze-thaw stability of CES was elevated sharply after five cycles. In addition, CES displayed increased shear and acid tolerance compared to the original waxy maize, and their lowest differences between waxy maize and CES were only 0.62% and 0.59%, respectively. In summary, a novel method for starch modification was provided, and the synthesized CES was suggested to have exceptional performance for the food industry.
Collapse
|
8
|
CAO C, WEI D, XUAN F, DENG C, HU J, ZHOU Y. Comparative study on the structure and physicochemical of waxy rice starch by phosphorylation, lactylation and dual-modified. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.18622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Chuan CAO
- Anhui Vocational and Technical College, China; Anhui Engineering Laboratory of Agricultural Products Processing, China
| | - Dongmei WEI
- Anhui Engineering Laboratory of Agricultural Products Processing, China; State Key Laboratory of Meat Processing and Quality Control, China
| | | | - Changyue DENG
- Anhui Engineering Laboratory of Agricultural Products Processing, China
| | - Jingwei HU
- Anhui Engineering Laboratory of Agricultural Products Processing, China
| | - Yibin ZHOU
- Anhui Engineering Laboratory of Agricultural Products Processing, China
| |
Collapse
|
9
|
Sharma V, Kaur M, Sandhu KS, Nain V, Janghu S. Physicochemical and Rheological Properties of Cross‐Linked Litchi Kernel Starch and Its Application in Development of Bio‐Films. STARCH-STARKE 2021. [DOI: 10.1002/star.202100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vinita Sharma
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa 125055 India
- Department of Food Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda 151001 India
| | - Maninder Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar 143005 India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda 151001 India
| | - Vikash Nain
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa 125055 India
| | - Sandeep Janghu
- Indian Institute of Food Processing Technology Guwahati Assam 781032 India
| |
Collapse
|
10
|
Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials. Int J Biol Macromol 2021; 184:218-234. [PMID: 34144062 DOI: 10.1016/j.ijbiomac.2021.06.077] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022]
Abstract
Starch derivatives are versatile compounds that are widely used in the pharmaceutical industry. This article reviews the advances in the research on hydrophilic and hydrophobic starch derivatives used to develop drug delivery systems over the last ten years, specifically microparticles, nanoparticles, nanocrystals, hydrogels, and scaffolds using these materials. The fundamentals of drug delivery systems, regulatory aspects, and chemical modifications are also discussed, along with the synthesis of starch derivatives via oxidation, etherification, acid hydrolysis, esterification, and cross-linking. The chemical modification of starch as a means to overcome the challenges in obtaining solid dosage forms is also reviewed. In particular, dialdehyde starches are potential derivatives for direct drug attachment; carboxymethyl starches are used for drug encapsulation and release, giving rise to pH-sensitive devices through electrostatic interactions; and starch nanocrystals have high potential as hydrogel fillers to improve mechanical properties and control drug release through hydrophilic interactions. Starch esterification with alginate and acidic drugs could be very useful for site-specific, controlled release. Starch cross-linking with other biopolymers such as xanthan gum is promising for obtaining novel polyelectrolyte hydrogels with improved functional properties. Surface modification of starch nanoparticles by cross-linking and esterification reactions is a potential approach to obtain novel, smart solid dosages.
Collapse
|
11
|
Zheng X, Qiu C, Long J, Jiao A, Xu X, Jin Z, Wang J. Preparation and characterization of porous starch/β-cyclodextrin microsphere for loading curcumin: Equilibrium, kinetics and mechanism of adsorption. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Hydroxypropylation of cross-linked sesbania gum, characterization and properties. Int J Biol Macromol 2020; 152:1010-1019. [DOI: 10.1016/j.ijbiomac.2019.10.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/11/2019] [Accepted: 10/20/2019] [Indexed: 11/23/2022]
|
13
|
Comparative study on phase transition and morphology of starch from maize and potato in ionic liquid/water mixtures: Effects of the different ratio. Int J Biol Macromol 2020; 147:911-920. [DOI: 10.1016/j.ijbiomac.2019.10.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 01/24/2023]
|
14
|
Caicedo C, Aguirre Loredo RY, Fonseca García A, Ossa OH, Vázquez Arce A, Calambás Pulgarin HL, Ávila Torres Y. Rheological, Thermal, Superficial, and Morphological Properties of Thermoplastic Achira Starch Modified with Lactic Acid and Oleic Acid. Molecules 2019; 24:molecules24244433. [PMID: 31817118 PMCID: PMC6943512 DOI: 10.3390/molecules24244433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
The modification of achira starch a thermoplastic biopolymer is shown. Glycerol and sorbitol, common plasticizers, were used in the molten state with organic acids such as oleic acid and lactic acid obtaining thermodynamically more stable products. The proportion of starch:plasticizer was 70:30, and the acid agent was added in portions from 3%, 6%, and 9% by weight. These mixtures were obtained in a torque rheometer for 10 min at 130 °C. The lactic acid managed to efficiently promote the gelatinization process by increasing the available polar sites towards the surface of the material; as a result, there were lower values in the contact angle, these results were corroborated with the analysis performed by differential scanning calorimetry and X-ray diffraction. The results derived from oscillatory rheological analysis had a viscous behavior in the thermoplastic starch samples and with the presence of acids; this behavior favors the transitions from viscous to elastic. The mixture of sorbitol or glycerol with lactic acid promoted lower values of the loss module, the storage module, and the complex viscosity, which means lower residual energy in the transition of the viscous state to the elastic state; this allows the compounds to be scaled to conventional polymer transformation processes.
Collapse
Affiliation(s)
- Carolina Caicedo
- Grupo de Investigación en Desarrollo de Materiales y Productos, Centro Nacional de Asistencia Técnica a la Industria (ASTIN), SENA, Cali 760003, Colombia; (O.H.O.); (A.V.A.); (H.L.C.P.)
- Correspondence:
| | - Rocío Yaneli Aguirre Loredo
- Consejo Nacional de Ciencia y Tecnología (CONACYT)-Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico; (R.Y.A.L.); (A.F.G.)
| | - Abril Fonseca García
- Consejo Nacional de Ciencia y Tecnología (CONACYT)-Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico; (R.Y.A.L.); (A.F.G.)
| | - Omar Hernán Ossa
- Grupo de Investigación en Desarrollo de Materiales y Productos, Centro Nacional de Asistencia Técnica a la Industria (ASTIN), SENA, Cali 760003, Colombia; (O.H.O.); (A.V.A.); (H.L.C.P.)
| | - Aldo Vázquez Arce
- Grupo de Investigación en Desarrollo de Materiales y Productos, Centro Nacional de Asistencia Técnica a la Industria (ASTIN), SENA, Cali 760003, Colombia; (O.H.O.); (A.V.A.); (H.L.C.P.)
| | - Heidy Lorena Calambás Pulgarin
- Grupo de Investigación en Desarrollo de Materiales y Productos, Centro Nacional de Asistencia Técnica a la Industria (ASTIN), SENA, Cali 760003, Colombia; (O.H.O.); (A.V.A.); (H.L.C.P.)
| | - Yenny Ávila Torres
- QUIBIO, Facultad de Ciencias Básicas, Universidad Santiago de Cali, Pampalinda, Santiago de Cali 760035, Colombia;
| |
Collapse
|