1
|
Liu M, Zhang P, Wu Y, Ouyang J. Chitosan-hydroxypropyl methylcellulose and sodium alginate bilayer edible films for chestnut preservation. Food Chem 2025; 466:142254. [PMID: 39615361 DOI: 10.1016/j.foodchem.2024.142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
To address the challenge of preserving fresh chestnuts, chitosan (CS), hydroxypropyl methylcellulose (HPMC), nisin (N), and sodium alginate (SA) were utilized in the preparation of a bilayer edible film named CS-HPMC-N/SA, which was compared to the monolayer films CS-HPMC and CS-HPMC-N. In comparison to the CS-HPMC film, the CS-HPMC-N and CS-HPMC-N/SA films exhibited increased water vapor permeability (WVP), oxygen permeability, and thickness, while transparency, tensile strength (TS), and elongation at break (EAB) were reduced. The bilayer film CS-HPMC-N/SA showed higher WVP, transparency, thickness, and EAB, but lower TS than the monolayer film CS-HPMC-N. The chestnuts coated with CS-HPMC-N/SA showed lower respiratory intensity and decay rate compared to those coated with CS-HPMC and CS-HPMC-N. These results suggested that the bilayer film CS-HPMC-N/SA, containing nisin, has potential as an edible material for preserving fresh chestnuts.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Peiying Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Zhang B, Hu C, Wang M, Wei H, Li S, Yu H, Wu Y, Wang G, Guo T, Chen H. Facile fabrication of a thermal/pH responsive IPN hydrogel drug carrier based on cellulose and chitosan through simultaneous dual-click strategy. J Colloid Interface Sci 2025; 678:827-841. [PMID: 39217698 DOI: 10.1016/j.jcis.2024.08.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Herein, an interpenetrating network hydrogel (IPN-Gel) based on cellulose and chitosan was synthesized via simultaneous amino-anhydride and azide-alkyne click reaction in water in one pot. The samples were characterized by various analytical methods including FTIR, SEM, XRD, XPS, 1H NMR and so forth. The fabrication conditions were optimized by single factor experiments with water uptake (WU) and gel mass fraction (GMF) as two indexes. The WU and GMF of the IPN-Gel prepared under optimized conditions were 1192.37 % and 74.00 %, respectively. Its WU descended with the ascension in temperature, and first descended and then gradually ascended with the ascension in pH, confirming that the IPN-Gel had thermal/pH dual responsiveness. Using 5-Fu as a model drug, the release behavior of 5-Fu in IPN-Gel was explored. Its release behavior could be regulated by changing temperature and pH values, and it followed the Korsmeyer Peppas model. The viability of 4 T1 cells and HUVEC cells exceeded 80 % after 48 h of incubation at a high concentration of 200 μg/mL IPN-Gel, and hemolytic percentage was below the allowed limit of 5 %. The study provides a new strategy for the preparation of the IPN-Gel with biocompatibility, swelling reversibility and controllable drug release.
Collapse
Affiliation(s)
- Bing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Mengyuan Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China
| | - Hongliang Wei
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Songmao Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hui Yu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yuxuan Wu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| |
Collapse
|
3
|
Hu X, Yan L, Zhang M. UV-radiation manufacturing of natural macromolecular products salecan and tannic acid-based functional gel material as superadsorbent for toluidine blue remediation. Int J Biol Macromol 2024; 280:135881. [PMID: 39321518 DOI: 10.1016/j.ijbiomac.2024.135881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Adsorbent materials constructed from natural macromolecular products are favored because of their wide range of sources, biodegradability, and environmental friendliness. Salecan is a novel extracellular polysaccharide with ideal physicochemical and biological activities. Here, we have designed a polymer gel through UV-initiated polymerization of [2-(Methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA) in the mixture of salecan and tannic acid. Photopatterned polymerization process allowed in situ formation of gel adsorbent in a mild reaction condition with energy-efficient manner. Batch experiments for toluidine blue (TB) adsorption were carried out as a function of initial dye concentration, solution pH, contact time, and gel dosage to examine the adsorption capacity, potential mechanism, and removal efficiency. Adsorption behavior exhibited a pH-dependence pattern, which was closely related to their swelling and morphological properties. Adsorption process was in conformity to pseudo-second-order kinetic and Langmuir isotherm models, unlocking a chemical adsorption behavior and monolayer-type removal. The maximum adsorption was 490.2 mg/g, which could be considered a superiorly competing value. Additionally, the UV-gel still showed desirable recyclability and maintained the adsorption effectiveness over 95 % after five regeneration cycles. This study opened up new prospects in preparing high performance adsorbent for TB decontamination and laid the foundation for polysaccharide-based adsorption material research.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| | - Linlin Yan
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Meng Zhang
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China
| |
Collapse
|
4
|
Cai X, Gao H, Xu T, Lv Y, Gu Y, Yan M, Li Y. Effects of Enteromorpha prolifera sulfated polysaccharide and aluminium ion addition on the multifunctional property of conductive hydrogel for wearable strain sensing. Int J Biol Macromol 2024; 277:134452. [PMID: 39102906 DOI: 10.1016/j.ijbiomac.2024.134452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Although introducing Enteromorpha prolifera sulfated polysaccharide (SPEP) enhances the mechanical properties of hydrogels significantly, little is known about the effects of polysaccharide and ion addition on morphological and physicochemical properties of conductive hydrogel. Therefore, the Poly (acrylic acid)/SPEPn/Al3+m (PAA/SPEPn/Al3+m) hydrogels with different SPEP and Al3+ addition were synthesized by simple one-pot method. The porosity, tensile strength, and swelling ration increased, while compressive strength, elongation at break, self-healing, self-adhesion properties increased first and then decreased as SPEP addition increased from 0 % to 3.80 %. The Al3+ addition increased from 0.08 % to 0.30 %, both tensile and compressive strength increased first and then decreased, while elongation at break kept increasing. Unexpectedly, both increasing SPEP and Al3+ addition reduced the electrical conductivity, while SPEP increased the gauge factor of hydrogel. The hydrogel exhibited optimal comprehensive properties when SPEP and Al3+ addition were 2.31 % and 0.24 %, respectively. The PAA/SPEP2.31%/Al3+0.24% hydrogel showed high tensile strength (107.60 kPa), elongation at break (2426.67 %), strain self-healing rate (81.87 %), adhesion strength (21.61 kPa), and conductivity (3.60 S/m). Overall, the properties of PAA/SPEPn/Al3+m hydrogels can be regulated through tailoring SPEP and Al3+ addition, which can be used as on-demand strategy to improve the performance of PAA/SPEPn/Al3+m hydrogels for each application.
Collapse
Affiliation(s)
- Xiujuan Cai
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, PR China
| | - Hongxu Gao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, PR China
| | - Ting Xu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, PR China
| | - Yue Lv
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, PR China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, PR China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, PR China
| | - Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, PR China.
| |
Collapse
|
5
|
Wang Z, Ni Y, Li J, Fan L. Development of interpenetrating network hydrogels: Enhancing the release and bioaccessibility of green tea polyphenols. Int J Biol Macromol 2024; 271:132511. [PMID: 38772471 DOI: 10.1016/j.ijbiomac.2024.132511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Green Tea polyphenols (GTP) are important bioactive compounds with excellent physiological regulation functions. However, they are easily destroyed by the gastric environment during digestion. In this work, a sodium alginate (SA)-gellan gum (GG) interpenetrating network (IPN) hydrogel was synthesized to protect and delivery GTP. The ratio of SA/GG significantly affects the network structure of IPN hydrogels and the performance of delivering GTP. The hydrogel formed by interpenetrating 20 % GG with 80 % SA as the main network had the highest water uptake (55 g/g), holding capacity (950 mg/g), and freeze-thaw stability, with springiness reaching 0.933 and hardness reaching 1300 g, which due to the filling effect and non-covalent interaction. Rheological tests showed that the crosslink density of IPN hydrogel in SA-dominated network was improved by the addition of GG to make it better bound to GTP, and the higher water uptake meant that the system could absorb more GTP-containing solution. This IPN hydrogel maintained 917.3 mg/g encapsulation efficiency at the highest loading capacity (1080 mg/g) in tests as delivery system. In in vitro digestion simulations, owing to the pH responsiveness, the IPN hydrogel reduced the loss of GTP in gastric fluid, achieving a bioaccessibility of 71.6 % in the intestinal tract.
Collapse
Affiliation(s)
- Zihua Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yang Ni
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jinwei Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science & Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Zhang Z, Cai X, Lv Y, Tang X, Shi N, Zhou J, Yan M, Li Y. Self-healing, ultra-stretchable, and highly sensitive conductive hydrogel reinforced by sulfate polysaccharide from Enteromorpha prolifera for human motion sensing. Int J Biol Macromol 2023; 253:126847. [PMID: 37709219 DOI: 10.1016/j.ijbiomac.2023.126847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The synthesis of multifunctional conductive hydrogel has attracted extensive attention worldwide due to their integrated properties of stretchability, self-adhesion, self-healing, and high sensitivity, while it is still a challenge. Although various kinds of polysaccharides and their derivatives are used to achieve the aforementioned objective, there are few researches about hydrogel design introducing sulfated polysaccharide from Enteromorpha prolifera (SPE), which is rich in hydroxyl, sulfate, and carboxyl groups providing amounts of reaction sites for hydrogel synthesis. Herein, conductive hydrogel (PAA-Al3+-SPE3) reinforced by SPE was designed by simple one pot hot polymerization method. This hydrogel demonstrated charming extension ratio (up to 4027.40 %), strain stress (up to 59.94 kPa), compressive strength (19.71 Mpa), and high conductivity sensibility (GF 6.76, 300 % - 700 %). Additionally, PAA-Al3+-SPE3 showed good self-healing property (repaired autonomously after 60 s) and satisfied self-adhesion (31.11 kPa) due to the reversible hydrogen bonds and metal coordination interactions. Furthermore, the PAA-Al3+-SPE3 hydrogel showed great real-time sensing performance to monitor various motions. These findings suggest the potential of PAA-Al3+-SPE3 hydrogel as an affordable and reliable conductive sensing material. Meantime, the first utilization of SPE to construct flexible wearable sensors offers new route for the high-value application of Enteromorpha prolifera.
Collapse
Affiliation(s)
- Zhuanyuan Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiujuan Cai
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yue Lv
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyan Tang
- Bureau of Agriculture and Rural Affairs of Donggang District, Rizhao 276800, PR China
| | - Naiwen Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jiazhe Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
7
|
Zhang Y, Zhao W, Lin Z, Tang Z, Lin B. Carboxymethyl chitosan/sodium alginate hydrogel films with good biocompatibility and reproducibility by in situ ultra-fast crosslinking for efficient preservation of strawberry. Carbohydr Polym 2023; 316:121073. [PMID: 37321748 DOI: 10.1016/j.carbpol.2023.121073] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Strawberry is a seasonal and regional fruit. Thus, strawberry waste caused by spoilage and decay is an urgent problem that must be solved. Developing hydrogel films (HGF) for multifunctional food packaging can effectively slow down strawberry. Based on the carboxymethyl chitosan/sodium alginate/citric acid with excellent biocompatibility, preservation effect, and ultrafast (10 s) coating on the strawberry surface, HGF specimens were designed and prepared through the electrostatic interaction of opposite charges between polysaccharides. The prepared HGF specimen exhibited excellent low moisture permeability and antibacterial properties. Its lethality rates against both Escherichia coli and Staphylococcus aureus were more than >99 %. The HGF could keep strawberries fresh for up to 8, 19, and 48 days at 25.0, 5.0, and 0 °C, respectively, by delaying the fruits' ripening, dehydration, microbial invasion, and respiration rate. The HGF dissolved and regenerated five times still exhibited good performance. The water vapor transmission rate of the regenerative HGF could reach 98 % of that of the original HGF. The regenerative HGF could maintain the freshness of strawberries for up to 8 days at 25.0 °C. This study provides new insight into an alternative film design for convenient, green, and renewable alternative films to delay perishable fruit spoilage.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenxin Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhenhao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhongfeng Tang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment, Harbin Institute of Technology, Harbin 150001, China.
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
8
|
Hu X, Yan L, Xu M, Tang L. Photo-degradable salecan/xanthan gum ionic gel induced by iron (III) coordination for organic dye decontamination. Int J Biol Macromol 2023; 238:124132. [PMID: 36958439 DOI: 10.1016/j.ijbiomac.2023.124132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
As dye adsorbents with great potential, polysaccharide-based hydrogels are significantly hampered in practical application owing to intricate preparation methods, low absorption, and bad degradability. Salecan is a water-soluble extracellular polysaccharide with excellent physicochemical and biological properties. Here, salecan and xanthan gum were first used as a dual-precursors system, their mixed solution was crosslinked by Fe3+ to assemble a photo-degradable ionic gel for malachite green (MG) adsorption. Photo-degradation was done using visible light under very mild conditions, which gave rise to gel network dissolution and homogeneous solution formation. Extensive dynamic coordinate interactions between Fe3+ and polysaccharides maintained gel matrix stability and were systematically investigated. The control of water uptake, micro-structure, and rheology can be facilely implemented by tuning salecan/xanthan gum ratios. Furthermore, various parameters such as polysaccharide ratios, pHs, MG concentrations, and contact time affecting adsorption were optimized using batch experiments. Adsorption process accurately adhered to pseudo-second-order kinetic and Langmuir isotherm model, with the maximum adsorption capacity of 463.0 mg/g. Such mechanism implied monolayer chemisorptive characteristics. The gel exhibited satisfactory reusability and was recycled five times without apparent decrease in adsorption capacity. From these results, the photo-degradable Fe3+-induced salecan/xanthan gum ionic gel is an alternative and sustainable absorbent for MG removal.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Research Institute of Forestry New Technology, CAF, Beijing 100091, China.
| | - Linlin Yan
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Research Institute of Forestry New Technology, CAF, Beijing 100091, China
| | - Man Xu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Lihua Tang
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| |
Collapse
|
9
|
Dikmetas DN, Uysal E, Karbancioglu-Guler F, Gurmen S. The production of pH indicator Ca and Cu alginate ((1,4)- β -d-mannuronic acid and α -l-guluronic acid) cryogels containing anthocyanin obtained via red cabbage extraction for monitoring chicken fillet freshness. Int J Biol Macromol 2023; 231:123304. [PMID: 36681229 DOI: 10.1016/j.ijbiomac.2023.123304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
In recent days, intelligent food packaging has gained attention due to consumers' needs and monitoring of the freshness of food. Biopolymers are used to produce matrix parts and dye chemicals, because of their unique properties, such as biodegradability and biocompatibility. In this study, alginate molecules and anthocyanins were used to produce to monitor chicken fillet freshness via pH response characteristics. Anthocyanins' color and UV characteristics at different pHs were investigated. The obtained anthocyanin solution showed visible color response at different pH level. In the red cabbage extract, the anthocyanin concentration was as 0.65 ± 0.03 mg/g. Alginate and extracted anthocyanins from red cabbage were mixed at the solution phase, then metal alginate hydrogels were synthesized via crosslinking Ca2+ and Cu2+ with alginate molecules. Due to the porous structure of the cryogels, hydrogels were freeze dried at -80 °C for 24 h at vacuum atmosphere. The obtained cryogel indicated significant color changes from pH 4 to pH 10, and at a basic environment, the color change was observed with the naked eye. The porosity amounts and sizes of the produced cryogels were examined, the average pore amount of cryogels was found to be 85.46 ± 4.36 %, and the average pore size 97.98 ± 26.20 μm. Furthermore, it was seen that the color change was not directly related to the porosity, but the interaction of anthocyanin and metal alginate matrix effected color changes degree of cryogels. Due to the electronegativity of Cu2+ ions, and the use of a low amount of anthocyanin was found to be more suitable for color change. The color was changed to blue-purple while total volatile basic nitrogen content increased to 46.67 mg/100 g from 14.00 mg/100 g. As a result, prepared cryogels should be a better candidates for use as a freshness indicator and intelligent packaging.
Collapse
Affiliation(s)
| | - Emircan Uysal
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Türkiye
| | | | - Sebahattin Gurmen
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Türkiye
| |
Collapse
|
10
|
Dragan ES, Humelnicu D, Dinu MV. Sustainable Multi-Network Cationic Cryogels for High-Efficiency Removal of Hazardous Oxyanions from Aqueous Solutions. Polymers (Basel) 2023; 15:polym15040885. [PMID: 36850169 PMCID: PMC9966014 DOI: 10.3390/polym15040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
It is still a challenge to develop advanced materials able to simultaneously remove more than one pollutant. Exclusive cationic composite double- and triple-network cryogels, with adequate sustainability in the removal of Cr2O72- and H2PO4- oxyanions, were developed in this work starting from single-network (SN) sponges. Chitosan (CS), as the only polycation originating from renewable resources, and poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) and polyethyleneimine (PEI), as synthetic polycations, were employed to construct multi-network cationic composite cryogels. The properties of the composites were tailored by the cross-linking degree of the first network (SN5 and SN20, which means CS with 5 or 20 mole % of glutaraldehyde, respectively) and by the order of the successive networks. FTIR, SEM-EDX, equilibrium water content and compressive tests were used in the exhaustive characterization of these polymeric composites. The sorption performances towards Cr2O72- and H2PO4- anions were evaluated in batch mode. The pseudo-first-order, pseudo-second-order (PSO) and Elovich kinetics models, and the Langmuir, Freundlich and Sips isotherm models were used to interpret the experimental results. The adsorption data were the best fitted by the PSO kinetic model and by the Sips isotherm model, indicating that the sorption mechanism was mainly controlled by chemisorption, irrespective of the structure and number of networks. The maximum sorption capacity for both oxyanions increased with the increase in the number of networks, the highest values being found for the multi-network sponges having SN5 cryogel as the first network. In binary systems, all sorbents preferred Cr2O72- ions, the selectivity coefficient being the highest for TN sponges. The high sorption capacity and remarkable reusability, with only a 4-6% drop in the sorption capacity after five sorption-desorption cycles, recommend these composite cryogels in the removal of two of the most dangerous pollutants represented by Cr2O72- and H2PO4-.
Collapse
Affiliation(s)
- Ecaterina Stela Dragan
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- Correspondence: ; Tel.: +40-232217454; Fax: +40-232211299
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
11
|
Formation of composite hydrogel of carboxymethyl konjac glucomannan/gelatin for sustained release of EGCG. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Li Y, Zhang Z, Liu X, Che S, Shi N, Chen Y, Yan M. Adsorption behavior and mechanism of Lead (Pb 2+) by sulfate polysaccharide from Enteromorpha prolifera. Int J Biol Macromol 2022; 207:760-770. [PMID: 35351544 DOI: 10.1016/j.ijbiomac.2022.03.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Lead (Pb2+) pollution poses severe healthy and ecological risks to humans. In this work, sulfate polysaccharide from Enteromorpha prolifera (SPE) was utilized for Pb2+ adsorption from simulated intestinal fluid. In order to evaluate its adsorption behaviors comprehensively, batch adsorption of Pb2+ was investigated under different conditions. Results showed that SPE presents high adsorption ability for Pb2+ through chemical adsorption process and the maximum adsorption capacity for Pb2+ was 278.5 mg/g. And SPE exhibited higher removal efficiency (≥60%) for trace Pb2+ (<10 mg/L) compared to that of other adsorbents based on polysaccharide. Besides, its adsorption can be described by Langmuir isotherm and pseudo-second-order kinetic models. Further, XRD, FTIR, and XPS were used to characterize the possible interaction of Pb2+ with SPE, and the results showed that carboxyl and hydroxyl groups in SPE play more important role than that of sulfate group. Our work represents the first assessment of Pb2+ adsorption properties of SPE. This investigation highlights the potential application of SPE to protect the body from hazard of food-derived heavy metals.
Collapse
Affiliation(s)
- Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhuanyuan Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyan Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shuai Che
- Key laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Naiwen Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yiming Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
13
|
Pang M, Zheng D, Jia P, Cao L. Novel Water-in-Oil Emulsions for Co-Loading Sialic Acid and Chitosan: Formulation, Characterization, and Stability Evaluation. Foods 2022; 11:foods11060873. [PMID: 35327295 PMCID: PMC8951255 DOI: 10.3390/foods11060873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
This study was designed to co-load sialic acid (SA) and chitosan in a water-in-oil (W/O) emulsion and investigated its characterization and stability. Emulsions were prepared using two different oils (olive oil and maize oil) and polyglycerol polyricinoleate (PGPR) alone or in combination with lecithin (LE) as emulsifiers. The results revealed that the aqueous phase of 5% (w/v) SA and 2% (w/v) chitosan could form a stable complex and make the aqueous phase into a transparent colloidal state. Increasing the concentration of PGPR and LE presented different effects on emulsion formation between olive oil-base and maize oil-base. Two stable W/O emulsions that were olive oil-based with 1.5% (w/v) PGPR+ 0.5% (w/v) LE and maize oil-based with 2% (w/v) PGPR+ 0% (w/v) LE were obtained. Initial droplet size distribution curves of the two stable emulsions displayed unimodal distribution, and the rheological curves displayed the characteristics of shear thinning and low static shear viscosity. Moreover, the storage stability showed that there was no significant change in droplet size distribution and Sauter mean diameter of the emulsions at room temperature (25 °C) for 30 days. These results indicated that the W/O emulsions could effectively co-load and protect sialic acid and chitosan and thus could be a novel method for increasing the stability of these water-soluble bioactive compounds.
Collapse
Affiliation(s)
- Min Pang
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei 230009, China; (M.P.); (D.Z.); (P.J.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Donglei Zheng
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei 230009, China; (M.P.); (D.Z.); (P.J.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Pengpeng Jia
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei 230009, China; (M.P.); (D.Z.); (P.J.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Lili Cao
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei 230009, China; (M.P.); (D.Z.); (P.J.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
- Correspondence:
| |
Collapse
|
14
|
Hu X, Wang Y, Zhang L, Xu M. Simple ultrasonic-assisted approach to prepare polysaccharide-based aerogel for cell research and histocompatibility study. Int J Biol Macromol 2021; 188:411-420. [PMID: 34375664 DOI: 10.1016/j.ijbiomac.2021.08.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
Salecan, a water-soluble microbial polysaccharide with attractive biocompatible characteristics, is very suitable for aerogel fabrication. However, the practical application of salecan-based aerogels for cell culture was limited by complicated preparation method, lack of cell anchorage signals, and the ability to modulate this properly. Here, a smart aerogel was designed by ultrasonic-assisted self-assembly of salecan and cationic starch (CAS) without any organic and toxic crosslinkers. The ultrasound waves generated a marked impact on self-assemble process by means of ultrasonic cavitation. Aerogel network was produced by strong electrostatic attractions between the polysaccharides. Especially, salecan/CAS ratio can be precisely modulated to tailor the hydrophilicity, mechanical stiffness, and morphologic property. The specific surface area of the aerogels gradually increased with the increase in salecan/CAS ratio. These aerogels were non-cytotoxic, and the incorporation of salecan into them promoted cell-matrix interactions by directionally supporting cell adhesion and proliferation. Most strikingly, in vivo experiment revealed that the histological features in the main organs of the mice were similar to those observed in the PBS-treated control group, and no sign of the histopathological abnormality or tissue destruction was observed, indicating the excellent histocompatibility of the aerogels. This study offered a new and powerful avenue to fabricate functional biomaterial.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province, Nanjing 210042, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Beijing 100714, China; National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China.
| | - Yongmei Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Liangliang Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Man Xu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| |
Collapse
|
15
|
Hu X, Yan L, Wang Y, Xu M. Smart and functional polyelectrolyte complex hydrogel composed of salecan and chitosan lactate as superadsorbent for decontamination of nickel ions. Int J Biol Macromol 2020; 165:1852-1861. [DOI: 10.1016/j.ijbiomac.2020.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
|
16
|
Hu X, Yan L, Wang Y, Xu M. Microwave-assisted synthesis of nutgall tannic acid–based salecan polysaccharide hydrogel for tunable release of β-lactoglobulin. Int J Biol Macromol 2020; 161:1431-1439. [DOI: 10.1016/j.ijbiomac.2020.07.250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/27/2022]
|
17
|
Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr Polym 2020; 234:115920. [DOI: 10.1016/j.carbpol.2020.115920] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/12/2023]
|
18
|
Construction of self-assembled polyelectrolyte complex hydrogel based on oppositely charged polysaccharides for sustained delivery of green tea polyphenols. Food Chem 2020; 306:125632. [DOI: 10.1016/j.foodchem.2019.125632] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/07/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
|
19
|
Sung TJ, Wang YY, Liu KL, Chou CH, Lai PS, Hsieh CW. Pholiota nameko Polysaccharides Promotes Cell Proliferation and Migration and Reduces ROS Content in H 2O 2-Induced L929 Cells. Antioxidants (Basel) 2020; 9:antiox9010065. [PMID: 31936888 PMCID: PMC7022505 DOI: 10.3390/antiox9010065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 01/02/2023] Open
Abstract
Pholiota nameko, a type of edible and medicinal fungus, is currently grown extensively for food and traditional medicine in China and Japan. It possesses various biological activities, such as anti-inflammatory, anti-hyperlipidemia and antitumor activities. However, P. nameko has rarely been discussed in the field of dermatology; identifying its biological activities could be beneficial in development of a new natural ingredient used in wound care. To evaluate its in vitro wound healing activities, the present study assessed the antioxidant and anti-collagenase activities of P. nameko polysaccharides (PNPs) prepared through fractional precipitation (40%, 60% and 80% (v/v)); the assessments were conducted using reducing power, hydroxyl radical scavenging activity, dichloro-dihydro-fluorescein diacetate and collagenase activity assays. The ability of PNPs to facilitate L929 fibroblast cell proliferation and migration was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and scratch assays. The findings indicated that, among all fractions, PNP-80 showed the best antioxidant and anti-collagenase activity, as measured by their reducing power (IC50 of PNP-80 was 2.43 ± 0.17 mg/mL), the hydroxyl radical scavenging (IC50 of PNP-80 was 2.74 ± 0.11 mg/mL) and collagenase activity assay, and significantly reduced cellular ROS content, compared with that of H2O2-induced L929 cells. Moreover, PNP-80 significantly promoted L929 fibroblast proliferation and migration, compared with the control group. Overall, we suggested that PNP-80 could be a promising candidate for further evaluation of its potential application on wound healing.
Collapse
Affiliation(s)
- Tzu-Jung Sung
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
| | - Yu-Ying Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
| | - Kai-Lun Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
| | - Chun-Hsu Chou
- Dr. Jou Biotech Co., Ltd., No.21, Lugong S. 2nd Rd., Lukang Township, Changhua Country 505, Taiwan;
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0385 (ext. 5031); Fax: +886-4-2287-6211
| |
Collapse
|
20
|
Dragan ES, Dinu MV. Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr Polym 2019; 225:115210. [DOI: 10.1016/j.carbpol.2019.115210] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
|
21
|
Hu X, Wang Y, Xu M. Study of the cell responses in tantalum carbide nanoparticles-enriched polysaccharide composite hydrogel. Int J Biol Macromol 2019; 135:501-511. [DOI: 10.1016/j.ijbiomac.2019.05.191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/19/2019] [Accepted: 05/26/2019] [Indexed: 12/15/2022]
|