1
|
Duran HE, Beydemir Ş. Naphthoquinones and anthraquinones: Exploring their impact on acetylcholinesterase enzyme activity. Biotechnol Appl Biochem 2024; 71:1079-1093. [PMID: 38715453 DOI: 10.1002/bab.2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 10/10/2024]
Abstract
The identification of novel acetylcholinesterase inhibitors holds significant relevance in the treatment of Alzheimer's disease (AD), the prevailing form of dementia. The exploration of alternative inhibitors to the conventional acetylcholinesterase inhibitors is steadily gaining prominence. Quinones, categorized as plant metabolites, represent a specific class of compounds. In this study, the inhibitory effects of various naphthoquinone derivatives, along with anthraquinone and its derivatives, on the acetylcholinesterase (AChE) enzyme were investigated for this purpose. An in vitro investigation was conducted to examine the effects of these compounds in order to clarify the possible mechanism of inhibition in the interaction between the enzyme and chemicals. In addition, an in silico investigation was carried out to understand the conceivable inhibitor binding process to the enzyme's active site. The acquired outcomes corroborated the in vitro results. The AChE enzyme was found to be effectively inhibited by both naphthoquinones and anthraquinones, with inhibition constant (KI) values ranging from 0.014 to 0.123 μM (micormolar). The AChE enzyme was inhibited differently by this quinone and its derivatives. Although derivatives of naphthoquinone and anthraquinone exhibited a competitive inhibitory effect, derivatives of anthraquinone exhibited a noncompetitive inhibition effect. Furthermore, because it had the lowest KI value of any of these substances, 1,5-dihydroxyanthraquinone (1c) was shown to be the most potent inhibitor. The findings will add to the body of knowledge on the creation of fresh, potent, and successful treatment approaches.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
2
|
Kataria A, Srivastava A, Singh DD, Haque S, Han I, Yadav DK. Systematic computational strategies for identifying protein targets and lead discovery. RSC Med Chem 2024; 15:2254-2269. [PMID: 39026640 PMCID: PMC11253860 DOI: 10.1039/d4md00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
Computational algorithms and tools have retrenched the drug discovery and development timeline. The applicability of computational approaches has gained immense relevance owing to the dramatic surge in the structural information of biomacromolecules and their heteromolecular complexes. Computational methods are now extensively used in identifying new protein targets, druggability assessment, pharmacophore mapping, molecular docking, the virtual screening of lead molecules, bioactivity prediction, molecular dynamics of protein-ligand complexes, affinity prediction, and for designing better ligands. Herein, we provide an overview of salient components of recently reported computational drug-discovery workflows that includes algorithms, tools, and databases for protein target identification and optimized ligand selection.
Collapse
Affiliation(s)
- Arti Kataria
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) Hamilton MT 59840 USA
| | - Ankit Srivastava
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) Hamilton MT 59840 USA
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University Jazan-45142 Saudi Arabia
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University Seoul 01897 Republic of Korea +82 32 820 4948
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Gachon University Hambakmoeiro 191, Yeonsu-gu Incheon 21924 Republic of Korea
| |
Collapse
|
3
|
Smith MD, Darryl Quarles L, Demerdash O, Smith JC. Drugging the entire human proteome: Are we there yet? Drug Discov Today 2024; 29:103891. [PMID: 38246414 DOI: 10.1016/j.drudis.2024.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Each of the ∼20,000 proteins in the human proteome is a potential target for compounds that bind to it and modify its function. The 3D structures of most of these proteins are now available. Here, we discuss the prospects for using these structures to perform proteome-wide virtual HTS (VHTS). We compare physics-based (docking) and AI VHTS approaches, some of which are now being applied with large databases of compounds to thousands of targets. Although preliminary proteome-wide screens are now within our grasp, further methodological developments are expected to improve the accuracy of the results.
Collapse
Affiliation(s)
- Micholas Dean Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN 37830, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - L Darryl Quarles
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; ORRxD LLC, 3404 Olney Drive, Durham, NC 27705, USA
| | - Omar Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jeremy C Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN 37830, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
4
|
Patel KN, Chavda D, Manna M. Molecular Docking of Intrinsically Disordered Proteins: Challenges and Strategies. Methods Mol Biol 2024; 2780:165-201. [PMID: 38987470 DOI: 10.1007/978-1-0716-3985-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Intrinsically disordered proteins (IDPs) are a novel class of proteins that have established a significant importance and attention within a very short period of time. These proteins are essentially characterized by their inherent structural disorder, encoded mainly by their amino acid sequences. The profound abundance of IDPs and intrinsically disordered regions (IDRs) in the biological world delineates their deep-rooted functionality. IDPs and IDRs convey such extensive functionality through their unique dynamic nature, which enables them to carry out huge number of multifaceted biomolecular interactions and make them "interaction hub" of the cellular systems. Additionally, with such widespread functions, their misfunctioning is also intimately associated with multiple diseases. Thus, understanding the dynamic heterogeneity of various IDPs along with their interactions with respective binding partners is an important field with immense potentials in biomolecular research. In this context, molecular docking-based computational approaches have proven to be remarkable in case of ordered proteins. Molecular docking methods essentially model the biomolecular interactions in both structural and energetic terms and use this information to characterize the putative interactions between the two participant molecules. However, direct applications of the conventional docking methods to study IDPs are largely limited by their structural heterogeneity and demands for unique IDP-centric strategies. Thus, in this chapter, we have presented an overview of current methodologies for successful docking operations involving IDPs and IDRs. These specialized methods majorly include the ensemble-based and fragment-based approaches with their own benefits and limitations. More recently, artificial intelligence and machine learning-assisted approaches are also used to significantly reduce the complexity and computational burden associated with various docking applications. Thus, this chapter aims to provide a comprehensive summary of major challenges and recent advancements of molecular docking approaches in the IDP field for their better utilization and greater applicability.Asp (D).
Collapse
Affiliation(s)
- Keyur N Patel
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dhruvil Chavda
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
5
|
Duran HE. Pyrimidines: Molecular docking and inhibition studies on carbonic anhydrase and cholinesterases. Biotechnol Appl Biochem 2023; 70:68-82. [PMID: 35112394 DOI: 10.1002/bab.2329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. The disease is characterized by dementia, memory impairment, cognitive impairment, and speech impairment. Cholinesterases (ChEs; AChE, acetylcholinesterase and BChE, butyrylcholinesterase) inhibitors and their benefits of cholinergic replacement in the treatment of AD have been researched and documented by scientists in various ways to date. Recent studies prove that human carbonic anhydrases (hCAs) are also one of the important targets in the treatment of AD. Therefore, the development of new agents that can simultaneously modulate the various mechanisms or targets involved in the AD pathway may be a powerful strategy to treat AD, the current disease. Considering these data, the effects of the pyrimidines (1-7) were investigated in this study for the discovery and development of multitargeted ChEs and hCAs inhibitors associated with AD. In addition, the molecular docking analysis of the 4-amino-2-choloropyrimidine (2) was performed to understand the binding interactions on the active site of the enzyme. All compounds (1-7) showed satisfactory enzyme inhibitory potency in micromolar concentrations against AChE, BChE, hCAI, and hCAII with KI values ranging from 0.099 to 0.241 μM, from 1.324 to 3.418 μM, from 0.201 to 0.884 μM, from 1.867 to 3.913 μM, respectively. Due to their ChEs and hCAs inhibition, these compounds (1-7) may be considered as leads for investigations in neurodegenerative diseases. All these results revealed that the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.201 ± 0.041 μM for hCA I), the 4-amino-6-hydroxypyrimidine (4) (KI value of 1.867 ± 0.296 μM for hCA II), the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.099 ± 0.008 μM for AChE), and the 4-amino-2-chloropyrimidine (2) (KI value of 1.324 ± 0.273 μM for BChE) from the pyrimidines in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against these enzymes, for the treatment of AD.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
6
|
Das B, Baidya ATK, Devi B, Rom T, Paul AK, Thakur B, Darreh-Shori T, Kumar R. Synthesis, single crystal X-ray, DFT, spectroscopic, molecular docking studies and in vitro biological evaluation of compound N-benzyl-4-(4-chlorophenyl)-2-oxobutanamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Fang M, Zhang Q, Wang X, Su K, Guan P, Hu X. Inhibition Mechanisms of (-)-Epigallocatechin-3-gallate and Genistein on Amyloid-beta 42 Peptide of Alzheimer's Disease via Molecular Simulations. ACS OMEGA 2022; 7:19665-19675. [PMID: 35721940 PMCID: PMC9202277 DOI: 10.1021/acsomega.2c01412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 05/06/2023]
Abstract
The misfolding and self-assembly of amyloid-beta (Aβ) peptides are one of the most important factors contributing to Alzheimer's disease (AD). This study aims to reveal the inhibition mechanisms of (-)-epigallocatechin-3-gallate (EGCG) and genistein on the conformational changes of Aβ42 peptides by using molecular docking and molecular dynamics (MD) simulation. The results indicate that both EGCG and genistein have inhibitory effects on the conformational transition of Aβ42 peptide. EGCG and genistein reduce the ratio of β-sheet secondary structures of Aβ42 peptide while inducing random coil structures. In terms of hydrophobic interactions in the central hydrophobic core of Aβ42 peptide, the binding affinities of EGCG are significantly larger in comparison with that of genistein. Our findings illustrate the inhibition mechanisms of EGCG and genistein on the Aβ42 peptides and prove that EGCG is a very promising inhibitor in impeding the conformational change of Aβ42 peptide.
Collapse
Affiliation(s)
- Mei Fang
- Department
of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Quan Zhang
- Department
of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xin Wang
- Department
of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Kehe Su
- Department
of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Ping Guan
- Department
of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Xiaoling Hu
- Department
of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| |
Collapse
|
8
|
Hao S, Yang Y, Han A, Chen J, Luo X, Fang G, Liu J, Wang S. Glycosides and Their Corresponding Small Molecules Inhibit Aggregation and Alleviate Cytotoxicity of Aβ40. ACS Chem Neurosci 2022; 13:766-775. [PMID: 35230090 DOI: 10.1021/acschemneuro.1c00729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are the class of naturally synthesized compounds in the secondary metabolism of plants, which are widely distributed in fruits and vegetables. Their potential health treatment strategies have attracted wide attention in the scientific community. The abnormal aggregation of Aβ to form mature fibrils is pathologically related to Alzheimer's disease (AD). Therefore, inhibiting Aβ40 fibrillogenesis was considered to be the major method for the intervention and therapy of AD. Glycosides, as a cluster of natural phenolic compounds, are widely distributed in Chinese herbs, fruits, and vegetables. The inhibitory effect of glycosides (phloridzin, salidroside, polydatin, geniposide, and gastrodin) and their corresponding small molecules (phloretin, 4-hydroxyphenyl ethanol, resveratrol, genipin, and 4-hydroxybenzyl alcohol) on Aβ40 aggregation and fibrils prolongation, disaggregation against mature fibrils, and the resulting cytotoxicity were studied by systematical biochemical, cell biology and molecular docking techniques, respectively. As a result, all inhibitors were observed against Aβ40 aggregation and fibrils prolongation and disaggregated mature Aβ40 fibrils in a dose-dependent manner. Besides, the cell validity experiments also showed that all inhibitors could effectively alleviate the cytotoxicity induced by Aβ40 aggregates, and the glycoside groups played important roles in this inhibiting process. Finally, molecular docking was performed to study the interactions between these inhibitors and Aβ40. Docking showed that all inhibitors were bound to the similar region of Aβ40, and glycoside group formed hydrogen bonds with the pivotal residues Lys16. These results indicated that the glycoside groups could increase the inhibitory effects and reduce cytotoxicity. Glycosides have tremendous potential to be developed as an innovative type of aggregation inhibitor to control and treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaoyu Luo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
9
|
Effects of Perilla frutescens var. acuta in amyloid β toxicity and Alzheimer's disease-like pathology in 5XFAD mice. Food Chem Toxicol 2022; 161:112847. [DOI: 10.1016/j.fct.2022.112847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 11/20/2022]
|
10
|
Sever B, Türkeş C, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir Ş. Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Arch Pharm (Weinheim) 2021; 354:e2100294. [PMID: 34569655 DOI: 10.1002/ardp.202100294] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/25/2023]
Abstract
New hybrid thiazolyl-pyrazoline derivatives (4a-k) were obtained through a facile and versatile synthetic procedure, and their inhibitory effects on the human carbonic anhydrase (hCA) isoforms I and II as well as on acetylcholinesterase (AChE) were determined. All new thiazolyl-pyrazolines showed activity at nanomolar levels as hCA I, hCA II, and AChE inhibitors, with KI values in the range of 13.35-63.79, 7.01-115.80, and 17.89-48.05 nM, respectively. 1-[4-(4-Cyanophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4f) and 1-(4-phenylthiazol-2-yl)-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4a) against hCAs and 1-[4-(4-chlorophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4d) and 1-[4-(4-nitrophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4b) against AChE were identified as highly potent inhibitors, superior to the standard drugs, acetazolamide and tacrine, respectively. Compounds 4a-k were also evaluated for their cytotoxic effects on the L929 mouse fibroblast (normal) cell line. Moreover, a comprehensive ligand-receptor interaction prediction was performed using the ADME-Tox, Glide XP, and MM-GBSA modules of the Schrödinger Small-Molecule Drug Discovery Suite to elucidate the potential binding modes of the new hybrid inhibitors against these metabolic enzymes.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mehlika D Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
11
|
Adewole KE, Gyebi GA, Ibrahim IM. Amyloid β fibrils disruption by kolaviron: Molecular docking and extended molecular dynamics simulation studies. Comput Biol Chem 2021; 94:107557. [PMID: 34371370 DOI: 10.1016/j.compbiolchem.2021.107557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022]
Abstract
Garcinia kola (GK) produces notable effects against neurodegenerative conditions, including experimentally-induced Alzheimer's disease (AD). These remarkable effects are basically attributable to kolaviron (KV), a bioflavonoid constituent of this seed. Specifically, it has been reported that in AD models, KV produces interesting neuroprotective effects, being able to diminish associated neurotoxicity, via modulation of antioxidative, inflammatory and other disease modifying processes. Intriguingly, the effect of KV on amyloid-beta (Aβ) aggregation and disruption of preformed Aβ fibrils have not been studied. In this study, we have described a thorough computational study on the mechanism of action of KV as an Aβ fibrils disruptor at molecular level. We used comprehensive in silico docking evaluations and extended molecular dynamics simulation to mimic KV/Aβ fibrils system. Results indicate that KV was able to move within the Aβ fibrils, binding with important residues and components in the Aβ peptide identified to be vital for stabilizing preformed fibrils. KV destabilized the assembled Aβ fibrils, indicating the ability KV as a potential anti-amyloidogenic agent. Furthermore, this work highlighted the possibility of identifying new multifunctional phytocompounds as potent AD drugs.
Collapse
Affiliation(s)
- Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria.
| | - Gideon A Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University, Karu, Nasarawa, Nigeria
| | - Ibrahim M Ibrahim
- Department of Biophysics, Faculty of Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Ghosh S, Verma S. Carvedilol inhibits Aβ 25-35 fibrillation by intervening the early stage helical intermediate formation: A biophysical investigation. Int J Biol Macromol 2021; 188:263-271. [PMID: 34371042 DOI: 10.1016/j.ijbiomac.2021.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Self-assembly of disordered amyloid-beta (Aβ) peptides results in highly ordered amyloid fibrils. The structural information of the early-stage events and also in the presence of inhibitors is of great significance. It is challenging to acquire due to the nature of the amyloids and experimental constraints. Here, we demonstrate the cascade of aggregation (early to late) of the Aβ25-35 peptide in the absence and presence of carvedilol, a nonselective β-adrenergic receptor blocker. The aggregation process of Aβ25-35 peptide is monitored using Thioflavin T (ThT) fluorescence, dynamic light scattering (DLS), circular dichroism (CD), Raman spectroscopic techniques, and imaging experiments. We find that the Aβ25-35 peptide undergoes an early-stage (3-6 h) helical intermediate formation across the fibrillation pathway using CD and Raman measurements. Carvedilol obstructs the helical intermediate formation of Aβ25-35 peptide resulting in inhibition. CD spectra and deconvolution of the Raman bands suggest the β-sheet formation (24-100 h) in the absence of carvedilol. Spectroscopic results indicate a disordered structure for the peptide in the presence of carvedilol (24-100 h). Electron microscopy (EM) shows the formation of polymorphic fibrils for the peptide alone and non-amyloidal aggregates in the presence of carvedilol. Molecular docking study suggests that the plausible mode of interaction with carvedilol involves the C-terminal residues of the peptide.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, UP 208016, India.
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, UP 208016, India.
| |
Collapse
|
13
|
Askin S, Tahtaci H, Türkeş C, Demir Y, Ece A, Akalın Çiftçi G, Beydemir Ş. Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorg Chem 2021; 113:105009. [PMID: 34052739 DOI: 10.1016/j.bioorg.2021.105009] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Imidazole and thiadiazole derivatives display an extensive application in pharmaceutical chemistry, and they have been investigated as bioactive molecules for medicinal chemistry purposes. Classical carbonic anhydrase (CA) inhibitors are based on sulfonamide groups, but inhibiting all CA isoforms nonspecifically, thereby causing undesired side effects, is the main drawback of these types of inhibitors. Here we reported an investigation of novel 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (9a-k, 10a, and 11a) and 2,5,6-trisubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (12a-20a) that do not possess the zinc-binding sulfonamide group for the inhibition of human carbonic anhydrase (hCA, EC 4.2.1.1) I and II isoforms and also of acetylcholinesterase (AChE, EC 3.1.1.7). Imidazo[2,1-b][1,3,4]thiadiazoles demonstrated low nanomolar inhibitory activity against hCA I, hCA II, and AChE (KIs are in the range of 23.44-105.50 nM, 10.32-104.70 nM, and 20.52-54.06 nM, respectively). Besides, compound 9b inhibit hCA I up to 18-fold compared to acetazolamide, while compound 10a has a 5-fold selectivity towards hCA II. The synthesized compounds were also evaluated for their cytotoxic effects on the L929 mouse fibroblast cell line. Molecular docking simulations were performed to elucidate these inhibitors' potential binding modes against hCA I and II isoforms and AChE. The novel compounds reported here can represent interesting lead compounds, and the results presented here might provide further structural guidance to discover and design more potent hCA and AChE inhibitors.
Collapse
Affiliation(s)
- Sercan Askin
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan 75700, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey.
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; The Rectorate of Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
14
|
Tang ZQ, Zhao L, Chen GX, Chen CYC. Novel and versatile artificial intelligence algorithms for investigating possible GHSR1α and DRD1 agonists for Alzheimer's disease. RSC Adv 2021; 11:6423-6446. [PMID: 35423219 PMCID: PMC8694922 DOI: 10.1039/d0ra10077c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampal lesions are recognized as the earliest pathological changes in Alzheimer's disease (AD). Recent researches have shown that the co-activation of growth hormone secretagogue receptor 1α (GHSR1α) and dopamine receptor D1 (DRD1) could recover the function of hippocampal synaptic and cognition. We combined traditional virtual screening technology with artificial intelligence models to screen multi-target agonists for target proteins from TCM database and a novel boost Generalized Regression Neural Network (GRNN) model was proposed in this article to improve the poor adjustability of GRNN. R-square was chosen to evaluate the accuracy of these artificial intelligent models. For the GHSR1α agonist dataset, Adaptive Boosting (AdaBoost), Linear Ridge Regression (LRR), Support Vector Machine (SVM), and boost GRNN achieved good results; the R-square of the test set of these models reached 0.900, 0.813, 0.708, and 0.802, respectively. For the DRD1 agonist dataset, Gradient Boosting (GB), Random Forest (RF), SVM, and boost GRNN achieved good results; the R-square of the test set of these models reached 0.839, 0.781, 0.763, and 0.815, respectively. According to these values of R-square, it is obvious that boost GRNN and SVM have better adaptability for different data sets and boost GRNN is more accurate than SVM. To evaluate the reliability of screening results, molecular dynamics (MD) simulation experiments were performed to make sure that candidates were docked well in the protein binding site. By analyzing the results of these artificial intelligent models and MD experiments, we suggest that 2007_17103 and 2007_13380 are the possible dual-target drugs for Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Zi-Qiang Tang
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University Shenzhen Guangzhou 510275 China
| | - Lu Zhao
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University Shenzhen Guangzhou 510275 China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou 510655 China
| | - Guan-Xing Chen
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University Shenzhen Guangzhou 510275 China
| | - Calvin Yu-Chian Chen
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University Shenzhen Guangzhou 510275 China
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
| |
Collapse
|
15
|
Pagano K, Tomaselli S, Molinari H, Ragona L. Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Front Neurosci 2020; 14:619667. [PMID: 33414705 PMCID: PMC7783407 DOI: 10.3389/fnins.2020.619667] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, with no cure and preventive therapy. Misfolding and extracellular aggregation of Amyloid-β (Aβ) peptides are recognized as the main cause of AD progression, leading to the formation of toxic Aβ oligomers and to the deposition of β-amyloid plaques in the brain, representing the hallmarks of AD. Given the urgent need to provide alternative therapies, natural products serve as vital resources for novel drugs. In recent years, several natural compounds with different chemical structures, such as polyphenols, alkaloids, terpenes, flavonoids, tannins, saponins and vitamins from plants have received attention for their role against the neurodegenerative pathological processes. However, only for a small subset of them experimental evidences are provided on their mechanism of action. This review focuses on those natural compounds shown to interfere with Aβ aggregation by direct interaction with Aβ peptide and whose inhibitory mechanism has been investigated by means of biophysical and structural biology experimental approaches. In few cases, the combination of approaches offering a macroscopic characterization of the oligomers, such as TEM, AFM, fluorescence, together with high-resolution methods could shed light on the complex mechanism of inhibition. In particular, solution NMR spectroscopy, through peptide-based and ligand-based observation, was successfully employed to investigate the interactions of the natural compounds with both soluble NMR-visible (monomer and low molecular weight oligomers) and NMR-invisible (high molecular weight oligomers and protofibrils) species. The molecular determinants of the interaction of promising natural compounds are here compared to infer the chemical requirements of the inhibitors and the common mechanisms of inhibition. Most of the data converge to indicate that the Aβ regions relevant to perturb the aggregation cascade and regulate the toxicity of the stabilized oligomers, are the N-term and β1 region. The ability of the natural aggregation inhibitors to cross the brain blood barrier, together with the tactics to improve their low bioavailability are discussed. The analysis of the data ensemble can provide a rationale for the selection of natural compounds as molecular scaffolds for the design of new therapeutic strategies against the progression of early and late stages of AD.
Collapse
Affiliation(s)
- Katiuscia Pagano
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Simona Tomaselli
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Henriette Molinari
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| |
Collapse
|
16
|
Kalaycı M, Türkeş C, Arslan M, Demir Y, Beydemir Ş. Novel benzoic acid derivatives: Synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000282. [PMID: 33155700 DOI: 10.1002/ardp.202000282] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia, memory impairment, cognitive dysfunction, and speech impairment. The utility of cholinergic replacement by acetylcholinesterase (AChE) inhibitors in AD treatment has been well documented so far. Recently, studies have also evidenced that human carbonic anhydrases (hCAs) serve as an important target for AD treatment. In this direction, the improvement of new multitarget drugs, which can simultaneously modulate several mechanisms or targets included in the AD pathway, may be a potent strategy to treat AD. In light of these data for understanding and developing AD-related multitarget AChE and hCAs inhibitors, in this study, novel methylene-aminobenzoic acid and tetrahydroisoquinolynyl-benzoic acid derivatives (4a-g and 6a-g) were designed. The synthesized analogs were experimentally validated for their effects by in vitro and direct enzymatic tests. Also, the compounds were subjected to in silico monitoring with Schrödinger Suite software to assign binding affinities of potential derivatives based on Glide XP scoring, molecular mechanics-generalized Born surface area computing, and validation by molecular docking. The results revealed that 6c (1,3-dimethyldihydropyrimidine-2,4-(1H,3H)-dione-substituted, KI value of 33.00 ± 0.29 nM), 6e (cyclohexanone-substituted, KI value of 18.78 ± 0.09 nM), and 6f (2,2-dimethyl-1,3-dioxan-4-one-substituted, KI value of 13.62 ± 0.21 nM) from the benzoic acid derivatives in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against hCA I, hCA II, and AChE, respectively, for the treatment of AD.
Collapse
Affiliation(s)
- Muharrem Kalaycı
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
17
|
Martinez Pomier K, Ahmed R, Melacini G. Catechins as Tools to Understand the Molecular Basis of Neurodegeneration. Molecules 2020; 25:E3571. [PMID: 32781559 PMCID: PMC7465241 DOI: 10.3390/molecules25163571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding as well as the subsequent self-association and deposition of amyloid aggregates is implicated in the progression of several neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Modulators of amyloidogenic aggregation serve as essential tools to dissect the underlying molecular mechanisms and may offer insight on potential therapeutic solutions. These modulators include green tea catechins, which are potent inhibitors of amyloid aggregation. Although catechins often exhibit poor pharmacokinetic properties and bioavailability, they are still essential tools for identifying the drivers of amyloid aggregation and for developing other aggregation modulators through structural mimicry. As an illustration of such strategies, here we review how catechins have been used to map the toxic surfaces of oligomeric amyloid-like species and develop catechin-based phenolic compounds with enhanced anti-amyloid activity.
Collapse
Affiliation(s)
- Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada;
| |
Collapse
|
18
|
Abouelela ME, Orabi MA, Abdelhamid RA, Abdelkader MS, Darwish FM, Hotsumi M, Konno H. Anti-Alzheimer's flavanolignans from Ceiba pentandra aerial parts. Fitoterapia 2020; 143:104541. [DOI: 10.1016/j.fitote.2020.104541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 11/30/2022]
|
19
|
Almutairi FM, Ajmal MR, Siddiqi MK, Majid N, Al-Alawy AIA, Abdelhameed AS, Khan RH. Biophysical insight into the interaction of levocabastine with human serum albumin: spectroscopy and molecular docking approach. J Biomol Struct Dyn 2020; 39:1525-1534. [PMID: 32308140 DOI: 10.1080/07391102.2020.1750486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interaction of levocabastine with human serum albumin (HSA) is investigated by applying fluorescence spectroscopy, circular dichroism spectroscopy and molecular docking methods. Levocabastine is an important drug in treatment of allergy and currently a target drug for drug repurposing to treat other diseases like vernal keratoconjuctivitis. Fluorescence quenching data revealed that levocabastine bind weakly to protein with binding constant in the order of 103 M-1. Förster resonance energy transfer results indicated the binding distance of 2.28 nm for levocabastine. Synchronous fluorescence result suggest slight blue shift for tryptophan upon levocabastine binding, binding of levocabastine impelled rise in α-helical structure in protein, while there are minimal changes in tertiary structure in protein. Moreover, docking results indicate levocabastine binds to pocket near to the drug site-I in HSA via hydrogen bonding and hydrophobic interactions. Understanding the interaction of levocabastine with HSA is significant for the advancement of therapeutic and diagnostic strategies for optimal treatment results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fahad M Almutairi
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Rehan Ajmal
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Adel Ibrahim Ahmad Al-Alawy
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
20
|
Gupta S, Dasmahapatra AK. Destabilization potential of phenolics on Aβ fibrils: mechanistic insights from molecular dynamics simulation. Phys Chem Chem Phys 2020; 22:19643-19658. [DOI: 10.1039/d0cp02459g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ellagic acid from pomegranate and walnuts is found to destabilize Aβ fibrils. It can be a potential drug to treat AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
- Center for Nanotechnology
| |
Collapse
|
21
|
Salahuddin P, Khan RH, Uversky VN. Comprehensive analysis of the molecular docking of small molecule inhibitors to the Aβ1–40peptide and its Osaka-mutant: insights into the molecular mechanisms of Aβ-peptide inhibition. J Biomol Struct Dyn 2019; 38:4536-4566. [DOI: 10.1080/07391102.2019.1697367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Parveen Salahuddin
- DISC, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Vladimir N. Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Russia
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
22
|
Liu F, Ma Z, Sang J, Lu F. Edaravone inhibits the conformational transition of amyloid-β42: insights from molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:2377-2388. [PMID: 31234720 DOI: 10.1080/07391102.2019.1632225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous work has shown that edaravone inhibits fibrillogenesis of amyloid-β protein (Aβ). However, the detailed mechanism by which edaravone inhibits the conformational transition of the Aβ42 monomer is not known at the molecular level. Here, explicit-solvent molecular dynamics (MD) simulations were coupled with molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method to address the issue. MD simulations confirmed that edaravone inhibits the conformational transition of the Aβ42 monomer in a dose-dependent manner. It was found that the direct interactions between edaravone and Aβ42 are responsible for its inhibiting effects. The analysis of binding free energy using the MM-PBSA method demonstrated that the nonpolar interactions provide favourable contributions (about -71.7 kcal/mol). Conversely, the polar interactions are unfavourable for the binding process. A total of 14 residues were identified as greatly contributing to the binding free energy between edaravone and the Aβ42 monomer. In addition, the intra-peptide hydrophobic interactions were weakened and the salt bridge D23-K28 was interrupted by edaravone. Therefore, the conformational transition was inhibited. Our studies provide molecular-level insights into how edaravone molecules inhibit the conformational transition of the Aβ42 monomer, which may be useful for designing amyloid inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin, PR China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, PR China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Zheng Ma
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Jingcheng Sang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin, PR China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, PR China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| |
Collapse
|