1
|
Flores-López LA, De la Mora-De la Mora I, Malagón-Reyes CM, García-Torres I, Martínez-Pérez Y, López-Herrera G, Hernández-Alcántara G, León-Avila G, López-Velázquez G, Olaya-Vargas A, Gómez-Manzo S, Enríquez-Flores S. Selective Inhibition of Deamidated Triosephosphate Isomerase by Disulfiram, Curcumin, and Sodium Dichloroacetate: Synergistic Therapeutic Strategies for T-Cell Acute Lymphoblastic Leukemia in Jurkat Cells. Biomolecules 2024; 14:1295. [PMID: 39456228 PMCID: PMC11506356 DOI: 10.3390/biom14101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a challenging childhood cancer to treat, with limited therapeutic options and high relapse rates. This study explores deamidated triosephosphate isomerase (dTPI) as a novel therapeutic target. We hypothesized that selectively inhibiting dTPI could reduce T-ALL cell viability without affecting normal T lymphocytes. Computational modeling and recombinant enzyme assays revealed that disulfiram (DS) and curcumin (CU) selectively bind and inhibit dTPI activity without affecting the non-deamidated enzyme. At the cellular level, treatment with DS and CU significantly reduced Jurkat T-ALL cell viability and endogenous TPI enzymatic activity, with no effect on normal T lymphocytes, whereas the combination of sodium dichloroacetate (DCA) with DS or CU showed synergistic effects. Furthermore, we demonstrated that dTPI was present and accumulated only in Jurkat cells, confirming our hypothesis. Finally, flow cytometry confirmed apoptosis in Jurkat cells after treatment with DS and CU or their combination with DCA. These findings strongly suggest that targeting dTPI represents a promising and selective target for T-ALL therapy.
Collapse
Affiliation(s)
- Luis A. Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, CONAHCYT-Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Ignacio De la Mora-De la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Claudia M. Malagón-Reyes
- Posgrado en Ciencias Biológicas, (Maestría), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Yoalli Martínez-Pérez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico;
| | - Gabriela López-Herrera
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Gloria Hernández-Alcántara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Mexico City 04510, Mexico;
| | - Gloria León-Avila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico;
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Alberto Olaya-Vargas
- Trasplante de Células Madre y Terapia Celular, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| |
Collapse
|
2
|
Šunderić M, Gligorijević N, Milčić M, Minić S, Nedić O, Nikolić M. Phycocyanobilin is a new binding partner of human alpha-2-macroglobulin that protects the protein against oxidative stress. J Biomol Struct Dyn 2024; 42:8761-8771. [PMID: 37592733 DOI: 10.1080/07391102.2023.2248273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Under simulated physiological conditions, this study investigates the interaction between nutraceutical phycocyanobilin (PCB) and the universal anti-protease protein human alpha-2-macroglobulin (α2M). Extensive molecular docking analyses on multiple α2M conformations, spectroscopic techniques, and α2M activity assays were utilized to examine the complex formation. The results revealed that for every protein conformation, two high energy binding sites exist: the first, conformationally independent, at the interface region between two monomer chains and the second, conformationally dependent, in the pocket composed of amino acids from four distinct domains (TED, RBD, CUB, and MG2) of the single protein chain. Spectrofluorimetric measurements indicated a moderate affinity between α2M and PCB with a moderately high binding constant of 6.3 × 105 M-1 at 25 °C. The binding of PCB to α2M resulted in minor changes in the secondary structure content of α2M. Furthermore, PCB protected α2M from oxidation and preserved its anti-protease activity in the oxidative environment. These findings suggest that PCB binding could indirectly impact the body's response to oxidative stress by influencing α2M's role in controlling enzyme activity during the inflammatory process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miloš Šunderić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade/Zemun, Serbia
| | - Nikola Gligorijević
- Department of Chemistry, Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miloš Milčić
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Simeon Minić
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade/Zemun, Serbia
| | - Milan Nikolić
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Wang Y, Shen J, Zou B, Zhang L, Xu X, Wu C. Unveiling the critical pH values triggering the unfolding of soy 7S and 11S globulins and enhancing their encapsulation efficiency. Food Chem 2024; 445:138707. [PMID: 38354644 DOI: 10.1016/j.foodchem.2024.138707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The pH-shifting process is an effective encapsulation method, and it is typically performed at extreme alkaline pH, which severely limits the application. In this study, we found that there were critical pH for the unfolding proteins during pH-shifting from 7 to 12, and upon the critical pH, physiochemical characteristics of protein greatly changed, leading to a sharp increase of encapsulation of hydrophobic actives. Firstly, the critical pH for β-conglycinin (7S) or Glycinin (11S) unfolding was determined by multispectral technology. The critical pH for 7S and 11S were 10.5 and 10.3, respectively. The encapsulation efficiency (EE) obtained by β-conglycinin-curcumin nanocomposite (7S-Cur) (88.80 %) and Glycinin-curcumin nanocomposite (11S-Cur) (88.38 %) at critical pH was significantly higher than that obtained by pH 7 (7S-Cur = 16.66 % and 11S-Cur = 15.78 %), and both values were close to EE obtained by at 12 (7S-Cur = 95.16 % and 11S-Cur = 94.63 %). The large-scale application of hydrophobic functional compounds will be enhanced by the experimental results.
Collapse
Affiliation(s)
- Yuying Wang
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Jing Shen
- Ningjin Market Supervision Administration, Dezhou 253400, China
| | - Bowen Zou
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Ling Zhang
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Xianbing Xu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Chao Wu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China.
| |
Collapse
|
4
|
Ansari S, Zia MK, Fatima S, Ahsan H, Khan FH. Probing the binding of morin with alpha-2-macroglobulin using multi-spectroscopic and molecular docking approach : Interaction of morin with α 2M. J Biol Phys 2023; 49:235-255. [PMID: 36913165 PMCID: PMC10160284 DOI: 10.1007/s10867-023-09629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/11/2023] [Indexed: 03/14/2023] Open
Abstract
Alpha-2-macroglobulin (α2M) is an essential antiproteinase that is widely distributed in human plasma. The present study was aimed at investigating the binding of a potential therapeutic dietary flavonol, morin, with human α2M using a multi-spectroscopic and molecular docking approach. Recently, flavonoid-protein interaction has gained significant attention, because a majority of dietary bioactive components interact with proteins, thereby altering their structure and function. The results of the activity assay exhibited a 48% reduction in the antiproteolytic potential of α2M upon interaction with morin. Fluorescence quenching tests unequivocally confirmed quenching in the fluorescence of α2M in the presence of morin, conforming complex formation and demonstrating that the binding mechanism involves a dynamic mode of interaction. Synchronous fluorescence spectra of α2M with morin showed perturbation in the microenvironment around tryptophan residues. Furthermore, structural changes were observed through CD and FT-IR, showing alterations in the secondary structure of α2M induced by morin. FRET further supports the results of the dynamic mode of quenching. Moderate interaction is shown by binding constant values using Stern-Volmer's fluorescence spectroscopy. Morin binds to α2M at 298 K with a binding constant of 2.7 × 104 M-1, indicating the strength of the association. The α2M-morin system was found to have negative ΔG values, which suggests that the binding process was spontaneous. Molecular docking also reveals the different amino acid residues involved in this binding process, revealing that the binding energy is -8.1 kcal/mol.
Collapse
Affiliation(s)
- Sana Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamila Fatima
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Fahim H Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
5
|
Wang Y, Chen X, Xu X, Du M, Zhu B, Wu C. Disulfide bond-breaking induced structural unfolding and assembly of soy protein acting as a nanovehicle for curcumin. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Interaction of curcumin with a winter flounder alpha-helical antifreeze protein. Biochem Biophys Res Commun 2022; 630:183-189. [PMID: 36166854 DOI: 10.1016/j.bbrc.2022.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022]
Abstract
The winter flounder, Pseudopleuronectes americanus, synthesizes a variety of alpha-helical antifreeze proteins (AFPs) that adhere to ice and inhibit its growth. The best studied of these is AFP6, which is a 37-residue protein abundant in the flounder blood plasma during winter. Curcumin from the turmeric plant (Curcuma longa) was found to interact with AFP6 in aqueous solutions, resulting in measurable changes in the curcumin, but not in the protein. Specifically, the secondary structure and unfolding of synthetic AFP6, shown by circular dichroism, appeared to be unaffected by curcumin. In contrast, the peak absorbance of curcumin shifted and increased in the presence of AFP6, and the maximum fluorescence emission was greater and blue shifted. These results also suggested the possibility of AFP6 detection by curcumin fluorescence. Synthetic AFP6 did not interact with Coomassie blue, silver or a commercial fluorescent stain following electrophoresis; however, the change in curcumin fluorescence upon binding to electrophoresed AFP6 resulted in a fluorescent signal, which was also detected upon interaction with purified natural AFP and flounder blood plasma containing the protein. Thus, aqueous curcumin can be used for the direct detection of AFP6 and curcumin binding could provide new avenues for the study of this protein.
Collapse
|
7
|
Tang CH. Nanocomplexation of proteins with curcumin: From interaction to nanoencapsulation (A review). Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106106] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Ali SS, Zia MK, Siddiqui T, Ahsan H, Khan FH. Bilirubin binding affects the structure and function of alpha-2-macroglobulin. J Immunoassay Immunochem 2020; 41:841-851. [DOI: 10.1080/15321819.2020.1783290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Syed Saqib Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Tooba Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
9
|
Ali SS, Zia MK, Siddiqui T, Ahsan H, Khan FH. Influence of Ascorbic Acid on the Structure and Function of Alpha-2- macroglobulin: Investigations using Spectroscopic and Thermodynamic Techniques. Protein Pept Lett 2020; 27:201-209. [DOI: 10.2174/0929866526666191002113525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023]
Abstract
Background:
Ascorbic acid is a classic dietary antioxidant which plays an important role
in the body of human beings. It is commonly found in various foods as well as taken as dietary
supplement.
Objective:
The plasma ascorbic acid concentration may range from low, as in chronic or acute
oxidative stress to high if delivered intravenously during cancer treatment. Sheep alpha-2-
macroglobulin (α2M), a human α2M homologue is a large tetrameric glycoprotein of 630 kDa with
antiproteinase activity, found in sheep’s blood.
Methods:
In the present study, the interaction of ascorbic acid with alpha-2-macroglobulin was
explored in the presence of visible light by utilizing various spectroscopic techniques and
isothermal titration calorimetry (ITC).
Results:
UV-vis and fluorescence spectroscopy suggests the formation of a complex between
ascorbic acid and α2M apparent by increased absorbance and decreased fluorescence. Secondary
structural changes in the α2M were investigated by CD and FT-IR spectroscopy. Our findings
suggest the induction of subtle conformational changes in α2M induced by ascorbic acid.
Thermodynamics signatures of ascorbic acid and α2M interaction indicate that the binding is an
enthalpy-driven process.
Conclusion:
It is possible that ascorbic acid binds and compromises antiproteinase activity of α2M
by inducing changes in the secondary structure of the protein.
Collapse
Affiliation(s)
- Syed Saqib Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| | - Tooba Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi - 110025, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| |
Collapse
|
10
|
Siddiqui T, Zia MK, Ali SS, Ahsan H, Khan FH. Investigating hydrogen peroxide induced damage to alpha-2-macroglobulin: Biophysical and thermodynamic study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Siddiqui T, Zia MK, Ahsan H, Khan FH. Quercetin-induced inactivation and conformational alterations of alpha-2-macroglobulin: multi-spectroscopic and calorimetric study. J Biomol Struct Dyn 2019; 38:4107-4118. [PMID: 31543004 DOI: 10.1080/07391102.2019.1671232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Quercetin is a widely used bioflavonoid found in onions, grapes, berries and citrus fruits. Under certain conditions, quercetin acts as a pro-oxidant thereby generating reactive oxygen species and promoting the oxidation of molecules. Our study investigates the effect of quercetin on the structure and function of alpha-2-macroglobulin (α2M) by employing various biophysical techniques and trypsin inhibitory assay. α2M is the major antiproteinase present in the plasma of vertebrates. Results of activity assay indicated that α2M loses its 56% of inhibitory activity on treatment with quercetin in the presence of light. UV spectroscopy reveals hyper chromaticity in absorption spectra of protein on interaction with quercetin suggesting structural change. The intrinsic fluorescence studies showed quenching of α2M spectra in the presence of quercetin, and the mode of quenching was found to be static in nature. Synchronous fluorescence indicated the alteration in the microenvironment of tryptophan residues. CD and FTIR spectroscopy confirms concentration-dependent alterations in secondary structure of α2M instigated by quercetin. The magnitude of binding constant, enthalpy change, entropy change and free energy change during the interaction process was determined by isothermal titration calorimetry. Hydrogen bonding and hydrophobic interaction were the main intermolecular forces involved during the process. This study identifies and signifies the damage induced by quercetin to α2M due to its pro-oxidant action. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tooba Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
12
|
Analysis of Proteins Associated with Quality Deterioration of Grouper Fillets Based on TMT Quantitative Proteomics during Refrigerated Storage. Molecules 2019; 24:molecules24142641. [PMID: 31330849 PMCID: PMC6680736 DOI: 10.3390/molecules24142641] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
A TMT (Tandem Mass Tag)-based strategy was applied to elucidate proteins that change in proteomes of grouper fillets during refrigerated storage. In addition, quality analyses on pH, centrifugal loss, color (L *, a *, b *) and texture (hardness, chewiness, and gumminess) for grouper fillets were performed. A total of 64 differentially significant expressed proteins (DSEPs) were found in the results in the Day 0 vs. Day 6 group comparison and the Day 0 vs. Day 12 group comparison. It is worth mentioning that more proteome changes were found in the Day 0 vs. Day 12 comparisons. Bioinformatics was utilized to analyze the DSEP. UniProt Knowledgebase (UniProtKB), Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein interaction network analysis were adopted. All DSEPs were classified into seven areas by function: binding proteins, calcium handling, enzymes, heat shock protein, protein turnover, structural proteins and miscellaneous. The numbers of proteins that correlated closely with pH, centrifugal loss, color (L *, a *, b *) and texture (hardness, chewiness, and gumminess) were 4, 3, 6 and 8, respectively.
Collapse
|
13
|
Zia MK, Siddiqui T, Ali SS, Ahsan H, Khan FH. Deciphering the binding of dutasteride with human alpha-2-macroglobulin: Molecular docking and calorimetric approach. Int J Biol Macromol 2019; 133:1081-1089. [DOI: 10.1016/j.ijbiomac.2019.04.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
|