1
|
Pandey R, Natarajan P, Reddy UK, Du W, Sirbu C, Sissoko M, Hankins GR. Deciphering the dose-dependent effects of thymoquinone on cellular proliferation and transcriptomic changes in A172 glioblastoma cells. PLoS One 2025; 20:e0318185. [PMID: 39874307 PMCID: PMC11774404 DOI: 10.1371/journal.pone.0318185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/11/2025] [Indexed: 01/30/2025] Open
Abstract
Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers. However, its specific anti-cancer mechanisms and pathways in glioblastoma remain to be completely elucidated. In this study, we assessed the impact of different TQ concentrations on the viability of A172 cells using WST-8 and Toluidine blue assays, followed by RNA sequencing (RNA-Seq) to identify differentially expressed genes (DEGs). We confirmed their expression levels through quantitative RT-PCR and performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for these DEGs. RNA-seq revealed no significant gene expression changes at 2.5 μM and 5 μM TQ concentrations. However, at 25 μM and 50 μM, TQ significantly reduced cell viability dose-dependently. We identified 1548 DEGs at 25 μM TQ (684 up-regulated, 864 down-regulated) and 2797 DEGs at 50 μM TQ (1528 up-regulated, 1269 downregulated), with 1202 DEGs common to both concentrations. TQ inhibited key pathways such as PI3K-Akt signaling, calcium signaling, focal adhesion, and ECM-receptor interaction in A172 cells. It downregulated several potential oncogenes (e.g., AEBP1, MIAT) and genes linked to GBM proliferation and migration (e.g., SOCS2, HCP5) while modulating Wnt signaling and up-regulating tumor suppressor genes (e.g., SPRY4, BEX2). TQ also affected p53 downstream targets, maintaining p53 levels. This study elucidates the anti-cancer mechanisms of TQ in A172 GBM cells, underscoring its effects on multiple signaling pathways and positioning TQ as a promising candidate for innovative glioblastoma treatment strategies.
Collapse
Affiliation(s)
- Rachana Pandey
- Department of Biology, West Virginia State University, Institute, WV, United States of America
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, WV, United States of America
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States of America
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, WV, United States of America
| | - Wei Du
- Cancer Center, Charleston Area Medical Center, Charleston, WV, United States of America
- Institute for Academic Medicine, Charleston, WV, United States of America
| | - Cristian Sirbu
- Cancer Center, Charleston Area Medical Center, Charleston, WV, United States of America
- Institute for Academic Medicine, Charleston, WV, United States of America
| | - Moussa Sissoko
- Katmai Oncology Group, Anchorage, Alaska, United States of America
| | - Gerald R. Hankins
- Department of Biology, West Virginia State University, Institute, WV, United States of America
| |
Collapse
|
2
|
Bagheri-Mohammadi S, Karamivandishi A, Mahdavi SA, Siahposht-Khachaki A. New sights on long non-coding RNAs in glioblastoma: A review of molecular mechanism. Heliyon 2024; 10:e39744. [PMID: 39553554 PMCID: PMC11564028 DOI: 10.1016/j.heliyon.2024.e39744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Glioma or glioblastoma (GBM) is one of the aggressive and fatal primary cerebral malignancies, with the highest mortality rate among all brain-related tumors. Also, glioma mainly progresses as a more invasive phenotype after primary treatment. Cumulative evidence suggested that dysregulation of noncoding RNAs (ncRNAs) such as long non-coding RNAs (LncRNAs) and microRNAs (miRNAs) are associated with tumor initiation, progression, and drug resistance, through epigenetic modifications, transcriptional, and post-transcriptional processes in the cells. Many scientific investigations have revealed that LncRNAs play important roles in various biological procedures linked with the development and progression of GBM. In recent years, it has been shown that dysregulation of molecular mechanisms in many LncRNAs such as MIR22HG, HULC, AGAP2-AS1, MALAT1, PVT1, TTTY14, HOTAIRM1, PTAR, LPP-AS2, LINC00336, and TINCR are connected with the GBM. Therefore, this scientific review paper focused on the molecular mechanisms of these LncRNAs in the context of GBM.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seif Ali Mahdavi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Weng YH, Chen J, Yu WT, Luo YP, Liu C, Yang J, Liu HB. lncRNA-MIAT rs9625066 polymorphism could be a potential biomarker for ischemic stroke. BMC Med Genomics 2024; 17:58. [PMID: 38383415 PMCID: PMC10882908 DOI: 10.1186/s12920-024-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a common and serious neurological condition that is highly fatal but so far no early diagnostic markers are available. Myocardial infarction-associated transcript (MIAT) is a long non-coding RNA (lncRNA) that could lead to IS by inducing autophagy and apoptosis in neuronal cells. However, there has been no report on the link between susceptibility to IS and the single-nucleotide polymorphisms (SNPs) of MIAT. This study aimed to investigate the association between MIAT gene polymorphisms and IS risk. METHODS A total of 320 IS patients and 310 age-, sex- and race-matched controls were included in this study. Four polymorphisms (rs2157598, rs5761664, rs1894720, and rs9625066) were genotyped by using SNPscan technique. RESULTS Among the 4 polymorphisms of MIAT, only rs9625066 was associated with IS risk (CA vs. CC: adjusted OR = 0.55, 95% CI, 0.37-0.85, P = 0.006; AA vs. CC: adjusted OR = 0.39, 95% CI, 0.16-0.94, P = 0.036; (AA + CA vs. CC: adjusted OR = 0.53, 95% CI, 0.35-0.80, P = 0.002; A vs. C adjusted OR = 0.59, 95% CI, 0.42-0.82, P = 0.002). Haplotype analysis showed a 1.32-fold increase (95% CI, 1.05-1.67, P = 0.017) in IS risk for rs2157598-rs5761664-rs1894720-rs9625066 (A-C-G-C). Logistic regression analysis identified some independent impact factors for IS including rs9625066 AA/AC, TC, TG, HDL-C (P < 0.05). CONCLUSION The rs9625066 polymorphism of MIAT might be associated with IS susceptibility in Chinese population, in which AA/CA plays a protective role in IS, whereas the CC genotype increases the risk of developing IS, suggesting it might be a marker predictive of IS risk.
Collapse
Affiliation(s)
- Yin-Hua Weng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jie Chen
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Wen-Tao Yu
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Yan-Ping Luo
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Chao Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China.
| | - Hong-Bo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China.
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.
| |
Collapse
|
4
|
Lu X, Zhang D. Expression of lncRNAs in glioma: A lighthouse for patients with glioma. Heliyon 2024; 10:e24799. [PMID: 38322836 PMCID: PMC10844031 DOI: 10.1016/j.heliyon.2024.e24799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Glioma is the most common malignant tumour in the central nervous system, accounting for approximately 30 % of the primary tumours of this system. The World Health Organization grades for glioma include: Grade I (pilocytic astrocytoma), Grade II (astrocytoma, oligodastoma, etc.), Grade III (anaplastic astrocytoma, anaplastic oligodastoma, etc.) and Grade IV (glioblastoma). With grade increases, the proliferation, invasion and other malignant biological properties of the glioma are enhanced, and the treatment results are less satisfactory. The overall survival of patients with glioblastoma is less than 15 months. Recent research has focused on the roles of long non-coding RNAs, previously regarded as "transcriptional noise", in diseases, leading to a new understanding of these roles. Therefore, we conducted this review to explore the progress of research regarding the expression and mechanism of long non-coding RNAs in glioma.
Collapse
Affiliation(s)
- Xiaolin Lu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongzhi Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
5
|
Ostini A, Mourtada-Maarabouni M. Investigation into the Role of Long-Non-Coding RNA MIAT in Leukemia. Noncoding RNA 2023; 9:47. [PMID: 37624039 PMCID: PMC10459085 DOI: 10.3390/ncrna9040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Myocardial Infarction Associated Transcript (MIAT) is a nuclear long non-coding RNA (LncRNA) with four different splicing variants. MIAT dysregulation is associated with carcinogenesis, mainly acting as an oncogene regulating cellular growth, invasion, and metastasis. The aim of the current study is to investigate the role of MIAT in the regulation of T and chronic myeloid leukemic cell survival. To this end, MIAT was silenced using MIAT-specific siRNAs in leukemic cell lines, and functional assays were performed thereafter. This investigation also aims to investigate the effects of MIAT silencing on the expression of core genes involved in cancer. Functional studies and gene expression determination confirm that MIAT knockdown not only affects short- and long-term survival and the apoptosis of leukemic cells but also plays a pivotal role in the alteration of key genes involved in cancer, including c-MYC and HIF-1A. Our observations suggest that MIAT could act as an oncogene and it has the potential to be used not only as a reliable biomarker for leukemia, but also be employed for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
| | - Mirna Mourtada-Maarabouni
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK;
| |
Collapse
|
6
|
Eraky AM. Advances in Brain Metastases Diagnosis: Non-coding RNAs As Potential Biomarkers. Cureus 2023; 15:e36337. [PMID: 37077610 PMCID: PMC10109215 DOI: 10.7759/cureus.36337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
Brain metastasis is considered the most common brain tumor. They arise from different primary cancers. The most common primary tumors giving brain metastases include breast, colorectal, lung, melanoma, and renal cancer. Depending only on history, physical examination, and conventional imaging modalities makes brain tumors diagnosis difficult. Rapid and non-invasive promising modalities could diagnose and differentiate between different brain metastases without exposing the patients to unnecessary brain surgeries for biopsies. One of these promising modalities is non-coding RNAs (ncRNAs). NcRNAs can determine brain metastases' prognosis, chemoresistance, and radioresistance. It also helps us to understand the pathophysiology of brain metastases development. Additionally, ncRNAs may work as potential therapeutic targets for brain metastases treatment and prevention. Herein, we present deregulated ncRNAs in different brain metastases, including microRNAs and long non-coding RNAs (lncRNAs), such as gastric adenocarcinoma, colorectal, breast, melanoma, lung, and prostate cancer. Additionally, we focus on serum and cerebrospinal fluid (CSF) expression of these ncRNAs in patients with brain metastases compared to patients with primary tumors. Moreover, we discuss the role of ncRNAs in modulating the immune response in the brain microenvironment. More clinical studies are encouraged to assess the specificity and sensitivity of these ncRNAs.
Collapse
Affiliation(s)
- Akram M Eraky
- Neurosurgery, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
7
|
Mukherjee S, Kundu U, Desai D, Pillai PP. Particulate Matters Affecting lncRNA Dysregulation and Glioblastoma Invasiveness: In Silico Applications and Current Insights. J Mol Neurosci 2022; 72:2188-2206. [PMID: 36370303 DOI: 10.1007/s12031-022-02069-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.
Collapse
Affiliation(s)
- Swagatama Mukherjee
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Uma Kundu
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Dhwani Desai
- Integrated Microbiome Resource, Department of Pharmacology and Marine Microbial Genomics and Biogeochemistry lab, Department of Biology, Dalhousie University, Halifix, Canada
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
8
|
Silencing of Long Noncoding RNA MIAT Contributes to Relieving Sepsis-Induced Myocardial Depression via the NF-κB Axis. J Surg Res 2022; 278:282-292. [PMID: 35636204 DOI: 10.1016/j.jss.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
|
9
|
Huang S, Gong N, Li J, Hong M, Li L, Zhang L, Zhang H. The role of ncRNAs in neuroblastoma: mechanisms, biomarkers and therapeutic targets. Biomark Res 2022; 10:18. [PMID: 35392988 PMCID: PMC8991791 DOI: 10.1186/s40364-022-00368-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma (NB) is a malignant tumor in young children that originates from the neural crest of the sympathetic nervous system. Generally, NB occurs in the adrenal glands, but it can also affect the nerve tissues of the neck, chest, abdomen, and pelvis. Understanding the pathophysiology of NB and developing novel therapeutic approaches are critical. Noncoding RNAs (ncRNAs) are associated with crucial aspects of pathology, metastasis and drug resistance in NB. Here, we summarized the pretranscriptional, transcriptional and posttranscriptional regulatory mechanisms of ncRNAs involved in NB, especially focusing on regulatory pathways. Furthermore, ncRNAs with the potential to serve as biomarkers for risk stratification, drug resistance and therapeutic targets are also discussed, highlighting the clinical application of ncRNAs in NB.
Collapse
Affiliation(s)
- Shaohui Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Naying Gong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Jiangbin Li
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Mingye Hong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Li Li
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Ling Zhang
- Health Science Center, University of Texas, Houston, 77030, USA.
| | - Hua Zhang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
10
|
Li X, Sun L, Stucky A, Tu L, Cai J, Chen X, Wu Z, Jiang X, Li SC. BDP1 Variants I1264M and V1347M Significantly Associated with Clinical Outcomes of Pediatric Neuroblastoma Patients Imply a New Prognostic Biomarker: A 121-Patient Cancer Genome Study. Diagnostics (Basel) 2021; 11:2364. [PMID: 34943600 PMCID: PMC8700758 DOI: 10.3390/diagnostics11122364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neuroblastoma (N.B.) is the most common tumor in children. The gene BDP1 (B Double Prime 1) plays a role in cancers but is less known in N.B. Thus, we conducted this study to investigate the value of BDP1 mutations in N.B. METHODS A dataset of 121 NB patients from the Cancer Genome Atlas database was used to analyze BDP1 gene mutations by RNA sequencing. Kaplan-Meier estimates were performed for overall survival (O.S.) analysis on BDP1 variants, and Cox's proportional hazards regression model was used for multivariate analysis. RESULTS In 121 NB patients, we identified two variants of BDP1 associated with N.B., located at chr5:71511131 and chr5:71510884. The prevalence of these BDP1 variants, I1264M and V1347M, was 52.9% (64/121) and 45.5% (55/121), respectively. O.S. analysis showed a significant difference between subgroups with or without BDP1 variants (p < 0.05). Multivariate analysis further revealed that BDP1ariants were independent prognostic variables in N.B. (p < 0.05). CONCLUSION Our results suggest BDP1 variants are associated with significantly improved clinical outcomes in N.B., thus providing clinicians with a new tool.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Oncology, the People’s Hospital of Bishan District, Chongqing 402760, China; (X.L.); (L.S.)
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lan Sun
- Department of Oncology, the People’s Hospital of Bishan District, Chongqing 402760, China; (X.L.); (L.S.)
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Lingli Tu
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Jin Cai
- Department of Oral and Maxillofacial Surgery, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China;
| | - Xuelian Chen
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.S.); (L.T.); (X.C.)
| | - Zhongjun Wu
- Department of Oncology, the People’s Hospital of Bishan District, Chongqing 402760, China; (X.L.); (L.S.)
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Xuhong Jiang
- Department of Health Management, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), 1201 West La Veta Ave, Orange, CA 92868-3874, USA;
- Department of Neurology, Irvine School of Medicine, University of California, 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
| |
Collapse
|
11
|
Li X, Sun L, Stucky A, Tu L, Cai J, Chen X, Wu Z, Jiang X, Li SC. BDP1 Variants I1264M and V1347M Significantly Associated with Clinical Outcomes of Pediatric Neuroblastoma Patients Imply a New Prognostic Biomarker: A 121-Patient Cancer Genome Study. Diagnostics (Basel) 2021; 11:2364. [DOI: https:/doi.org/10.3390/diagnostics11122364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Background: Neuroblastoma (N.B.) is the most common tumor in children. The gene BDP1 (B Double Prime 1) plays a role in cancers but is less known in N.B. Thus, we conducted this study to investigate the value of BDP1 mutations in N.B. prognosis. Methods: A dataset of 121 NB patients from the Cancer Genome Atlas database was used to analyze BDP1 gene mutations by RNA sequencing. Kaplan-Meier estimates were performed for overall survival (O.S.) analysis on BDP1 variants, and Cox’s proportional hazards regression model was used for multivariate analysis. Results: In 121 NB patients, we identified two variants of BDP1 associated with N.B., located at chr5:71511131 and chr5:71510884. The prevalence of these BDP1 variants, I1264M and V1347M, was 52.9% (64/121) and 45.5% (55/121), respectively. O.S. analysis showed a significant difference between subgroups with or without BDP1 variants (p < 0.05). Multivariate analysis further revealed that BDP1ariants were independent prognostic variables in N.B. (p < 0.05). Conclusion: Our results suggest BDP1 variants are associated with significantly improved clinical outcomes in N.B., thus providing clinicians with a new tool.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Oncology, the People’s Hospital of Bishan District, Chongqing 402760, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lan Sun
- Department of Oncology, the People’s Hospital of Bishan District, Chongqing 402760, China
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lingli Tu
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jin Cai
- Department of Oral and Maxillofacial Surgery, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China
| | - Xuelian Chen
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhongjun Wu
- Department of Oncology, the People’s Hospital of Bishan District, Chongqing 402760, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Xuhong Jiang
- Department of Health Management, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), 1201 West La Veta Ave, Orange, CA 92868-3874, USA
- Department of Neurology, Irvine School of Medicine, University of California, 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
| |
Collapse
|
12
|
LncRNA MIAT Inhibits MPP +-Induced Neuronal Damage Through Regulating the miR-132/SIRT1 Axis in PC12 Cells. Neurochem Res 2021; 46:3365-3374. [PMID: 34514556 DOI: 10.1007/s11064-021-03437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. LncRNA MIAT has been shown to be critical in Alzheimer's disease, but its role and mechanism in PD are still unknown. Differentiated PC12 cells were treated with 1-methyl-4-phenylpyridinium (MPP+) to establish in vitro cell injury model of PD. MTT, Annexin V-PI double staining test and Western blot were used to detect cell viability and apoptosis. Reactive oxygen species (ROS), superoxide dismutase (SOD) and phospholipid hydroperoxide glutathione peroxidase (GSH-PX) kits were used to evaluate oxidative stress in cells. These results showed that LncRNA MIAT was down-regulated in MPP+-induced PC12 cells. Overexpression of LncRNA MIAT remarkably increased cell viability, inhibited cell apoptosis and oxidative stress in MPP+-treated cells. In addition, we proved that miR-132 is a target of LncRNA MIAT. Overexpression of miR-132 could reverse the positive effect of LncRNA MIAT overexpression on MPP+-induced cell oxidative stress injury. SIRT1 is a target of miR-132 and silencing of SIRT1 attunated the positive effect of LncRNA MIAT overexpression on oxidative stress injury in MPP+-induced PC12 cells. In conclusion, this study indicated that LncRNA MIAT suppressed MPP+-induced oxidative stress injury by regulating miR-132/SIRT1 axis in PC12 cells.
Collapse
|
13
|
Momtazmanesh S, Rezaei N. Long Non-Coding RNAs in Diagnosis, Treatment, Prognosis, and Progression of Glioma: A State-of-the-Art Review. Front Oncol 2021; 11:712786. [PMID: 34322395 PMCID: PMC8311560 DOI: 10.3389/fonc.2021.712786] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common malignant central nervous system tumor with significant mortality and morbidity. Despite considerable advances, the exact molecular pathways involved in tumor progression are not fully elucidated, and patients commonly face a poor prognosis. Long non-coding RNAs (lncRNAs) have recently drawn extra attention for their potential roles in different types of cancer as well as non-malignant diseases. More than 200 lncRNAs have been reported to be associated with glioma. We aimed to assess the roles of the most investigated lncRNAs in different stages of tumor progression and the mediating molecular pathways in addition to their clinical applications. lncRNAs are involved in different stages of tumor formation, invasion, and progression, including regulating the cell cycle, apoptosis, autophagy, epithelial-to-mesenchymal transition, tumor stemness, angiogenesis, the integrity of the blood-tumor-brain barrier, tumor metabolism, and immunological responses. The well-known oncogenic lncRNAs, which are upregulated in glioma, are H19, HOTAIR, PVT1, UCA1, XIST, CRNDE, FOXD2-AS1, ANRIL, HOXA11-AS, TP73-AS1, and DANCR. On the other hand, MEG3, GAS5, CCASC2, and TUSC7 are tumor suppressor lncRNAs, which are downregulated. While most studies reported oncogenic effects for MALAT1, TUG1, and NEAT1, there are some controversies regarding these lncRNAs. Expression levels of lncRNAs can be associated with tumor grade, survival, treatment response (chemotherapy drugs or radiotherapy), and overall prognosis. Moreover, circulatory levels of lncRNAs, such as MALAT1, H19, HOTAIR, NEAT1, TUG1, GAS5, LINK-A, and TUSC7, can provide non-invasive diagnostic and prognostic tools. Modulation of expression of lncRNAs using antisense oligonucleotides can lead to novel therapeutics. Notably, a profound understanding of the underlying molecular pathways involved in the function of lncRNAs is required to develop novel therapeutic targets. More investigations with large sample sizes and increased focus on in-vivo models are required to expand our understanding of the potential roles and application of lncRNAs in glioma.
Collapse
Affiliation(s)
- Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Lu M, Wu Y, Gao W, Tian Y, Wang G, Liu A, Chen W. Novel Non-coding RNA Analysis in Multiple Myeloma Identified Through High-Throughput Sequencing. Front Genet 2021; 12:625019. [PMID: 34108986 PMCID: PMC8181418 DOI: 10.3389/fgene.2021.625019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to explore the potential effects of novel non-coding ribose nucleic acids (ncRNAs) in patients with multiple myeloma (MM). The gene expression profile of plasma cells was used for sequence analysis to explore the expression pattern of ncRNAs in MM. The expression patterns of non-coding RNAs in MM were analyzed by RNA sequencing (whole-transcriptome-specific RNA sequencing). Next, the expression of the selected ncRNAs was verified by quantitative real-time polymerase chain reaction. Further, the lncRNA-associated competitive endogenous RNA network in MM was elucidated using deep RNA-seq. Differentially expressed (DE) ncRNAs were significantly regulated in patients with MM. DE target lncRNAs were analyzed by cis and trans targeting prediction. Two new lncRNAs were shown to be related to MM oncogenes. MSTRG.155519 played a carcinogenic role in myeloma by targeting CEACAM1; MSTRG.13132 was related to FAM46C. Finally, the network of lncRNA–mRNA–miRNA in MM was constructed in this study. The expression of non-coding RNAs through sequence and functional analyses might be helpful for further studies on the pathogenesis of MM and the development of new MM-targeted therapy for non-coding RNAs.
Collapse
Affiliation(s)
- Minqiu Lu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Department of Hematology, Beijing Jishuitan Hospital, Fourth Medical College of Peking University, Beijing, China
| | - Yin Wu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Gao
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Tian
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guorong Wang
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Aijun Liu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenming Chen
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Wieland L, Engel K, Volkmer I, Krüger A, Posern G, Kornhuber ME, Staege MS, Emmer A. Overexpression of Endogenous Retroviruses and Malignancy Markers in Neuroblastoma Cell Lines by Medium-Induced Microenvironmental Changes. Front Oncol 2021; 11:637522. [PMID: 34026614 PMCID: PMC8138558 DOI: 10.3389/fonc.2021.637522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma (NB) is the commonest solid tumor outside the central nervous system in infancy and childhood with a unique biological heterogeneity. In patients with advanced, metastasizing neuroblastoma, treatment failure and poor prognosis is often marked by resistance to chemo- or immunotherapy. Thus, identification of robust biomarkers seems essential for understanding tumor progression and developing effective therapy. Here, we have studied the expression of human endogenous retroviruses (HERV) as potential targets in NB cell lines during stem-cell medium-induced microenvironmental change. Quantitative PCR revealed that relative expression of the HERV-K family and HERV-W1 ENV were increased in all three NB cell lines after incubation in stem-cell medium. Virus transcriptome analyses revealed the transcriptional activation of three endogenous retrovirus elements: HERV-R ENV (ERV3-1), HERV-E1 and HERV-Fc2 ENV (ERVFC1-1). Known malignancy markers in NB, e.g. proto-oncogenic MYC or MYCN were expressed highly heterogeneously in the three investigated NB cell lines with up-regulation of MYC and MYCN upon medium-induced microenvironmental change. In addition, SiMa cells exclusively showed a phenotype switching from loosely-adherent monolayers to low proliferating grape-like cellular aggregates, which was accompanied by an enhanced CD133 expression. Interestingly, the overexpression of HERV was associated with a significant elevation of immune checkpoint molecule CD200 in both quantitative PCR and RNA-seq analysis suggesting tumor escape mechanism in NB cell lines after incubation in serum-free stem cell medium.
Collapse
Affiliation(s)
- Lisa Wieland
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Malte E Kornhuber
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Emmer
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
16
|
MIAT Is an Upstream Regulator of NMYC and the Disruption of the MIAT/NMYC Axis Induces Cell Death in NMYC Amplified Neuroblastoma Cell Lines. Int J Mol Sci 2021; 22:ijms22073393. [PMID: 33806217 PMCID: PMC8038079 DOI: 10.3390/ijms22073393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma (NBL) is the most common extracranial childhood malignant tumor and represents a major cause of cancer-related deaths in infants. NMYC amplification or overexpression is associated with the malignant behavior of NBL tumors. In the present study, we revealed an association between long non-coding RNA (lncRNA) myocardial infarction associated transcript (MIAT) and NMYC amplification in NBL cell lines and MIAT expression in NBL tissue samples. MIAT silencing induces cell death only in cells with NMYC amplification, but in NBL cells without NMYC amplification it decreases only the proliferation. MIAT downregulation markedly reduces the NMYC expression in NMYC-amplified NBL cell lines and c-Myc expression in NMYC non-amplified NBL cell lines, but the ectopic overexpression or downregulation of NMYC did not affect the expression of MIAT. Moreover, MIAT downregulation results in decreased ornithine decarboxylase 1 (ODC1), a known transcriptional target of MYC oncogenes, and decreases the glycolytic metabolism and respiratory function. These results indicate that MIAT is an upstream regulator of NMYC and that MIAT/NMYC axis disruption induces cell death in NMYC-amplified NBL cell lines. These findings reveal a novel mechanism for the regulation of NMYC in NBL, suggesting that MIAT might be a potential therapeutic target, especially for those with NMYC amplification.
Collapse
|
17
|
Rezaei O, Tamizkar KH, Sharifi G, Taheri M, Ghafouri-Fard S. Emerging Role of Long Non-Coding RNAs in the Pathobiology of Glioblastoma. Front Oncol 2021; 10:625884. [PMID: 33634032 PMCID: PMC7901982 DOI: 10.3389/fonc.2020.625884] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is the utmost aggressive diffuse kind of glioma which is originated from astrocytes, neural stem cells or progenitors. This malignant tumor has a poor survival rate. A number of genetic aberrations and somatic mutations have been associated with this kind of cancer. In recent times, the impact of long non-coding RNAs (lncRNAs) in glioblastoma has been underscored by several investigations. Up-regulation of a number of oncogenic lncRNAs such as H19, MALAT1, SNHGs, MIAT, UCA, HIF1A-AS2 and XIST in addition to down-regulation of other tumor suppressor lncRNAs namely GAS5, RNCR3 and NBAT1 indicate the role of these lncRNAs in the pathogenesis of glioblastoma. Several in vitro and a number of in vivo studies have demonstrated the contribution of these transcripts in the regulation of cell proliferation and apoptosis, cell survival, invasion and metastasis of glioblastoma cells. Moreover, some lncRNAs such as SBF2-AS1 are involved in conferring resistance to temozolomide. Finally, few circularRNAs have been identified that influence the evolution of glioblastoma. In this paper, we discuss the impacts of lncRNAs in the pathogenesis of glioblastoma, their applications as markers and their implications in the therapeutic responses in this kind of cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Pang B, Quan F, Ping Y, Hu J, Lan Y, Pang L. Dissecting the Invasion-Associated Long Non-coding RNAs Using Single-Cell RNA-Seq Data of Glioblastoma. Front Genet 2021; 11:633455. [PMID: 33505440 PMCID: PMC7831882 DOI: 10.3389/fgene.2020.633455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is characterized by rapid and lethal infiltration of brain tissue, which is the primary cause of treatment failure and deaths for GBM. Therefore, understanding the molecular mechanisms of tumor cell invasion is crucial for the treatment of GBM. In this study, we dissected the single-cell RNA-seq data of 3345 cells from four patients and identified dysregulated genes including long non-coding RNAs (lncRNAs), which were involved in the development and progression of GBM. Based on co-expression network analysis, we identified a module (M1) that significantly overlapped with the largest number of dysregulated genes and was confirmed to be associated with GBM invasion by integrating EMT signature, experiment-validated invasive marker and pseudotime trajectory analysis. Further, we denoted invasion-associated lncRNAs which showed significant correlations with M1 and revealed their gradually increased expression levels along the tumor cell invasion trajectory, such as VIM-AS1, WWTR1-AS1, and NEAT1. We also observed the contribution of higher expression of these lncRNAs to poorer survival of GBM patients. These results were mostly recaptured in another validation data of 7930 single cells from 28 GBM patients. Our findings identified lncRNAs that played critical roles in regulating or controlling cell invasion and migration of GBM and provided new insights into the molecular mechanisms underlying GBM invasion as well as potential targets for the treatment of GBM.
Collapse
Affiliation(s)
- Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Fei Quan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Ghafouri-Fard S, Azimi T, Taheri M. Myocardial Infarction Associated Transcript (MIAT): Review of its impact in the tumorigenesis. Biomed Pharmacother 2020; 133:111040. [PMID: 33378948 DOI: 10.1016/j.biopha.2020.111040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022] Open
Abstract
Myocardial Infarction Associated Transcript (MIAT) is a non-coding transcript which is located on chromosome 22q12.1. This lncRNA can regulate expression of genes at both transcriptional and post-transcriptional stages. It has been firstly recognized as a susceptibility locus for myocardial infarction. Subsequently, its role in the development of several human cancers has been acknowledged. Numerous researches have reported the impact of MIAT silencing on the reduction of cell viability, proliferation and invasion while enhancement of cellular senescence and apoptosis. Consistently, investigations in the xenograft models have verified MIAT role in the promotion of tumor growth. Numerous microRNAs such as miR-214, miR-22-3p, miR-520d-3p, miR-203a, miR-29a-3p, miR-141, miR-150, miR-302, miR-29, and miR-155-5p have functional interactions with this lncRNA. Moreover, dysregulation of MIAT has been associated with abnormal activity of numerous cancer-related signaling cascades such as Hippo, PI3K/Akt/c-Met and Wnt/β-catenin. In the current review, we explain the role of MIAT in the cancer evolution based on the outcomes of in vitro, in vivo and clinical studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Azimi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Aravindan N, Herman T, Aravindan S. Emerging therapeutic targets for neuroblastoma. Expert Opin Ther Targets 2020; 24:899-914. [PMID: 33021426 PMCID: PMC7554151 DOI: 10.1080/14728222.2020.1790528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Neuroblastoma (NB) is the prime cancer of infancy, and accounts for 9% of pediatric cancer deaths. While children diagnosed with clinically stable NB experience a complete cure, those with high-risk disease (HR-NB) do not recover, despite intensive therapeutic strategies. Development of novel and effective targeted therapies is needed to counter disease progression, and to benefit long-term survival of children with HR-NB. AREAS COVERED Recent studies (2017-2020) pertinent to NB evolution are selectively reviewed to recognize novel and effective therapeutic targets. The prospective and promising therapeutic targets/strategies for HR-NB are categorized into (a) targeting oncogene-like and/or reinforcing tumor suppressor (TS)-like lncRNAs; (b) targeting oncogene-like microRNAs (miRs) and/or mimicking TS-miRs; (c) targets for immunotherapy; (d) targeting epithelial-to-mesenchymal transition and cancer stem cells; (e) novel and beneficial combination approaches; and (f) repurposing drugs and other strategies in development. EXPERT OPINION It is highly unlikely that agents targeting a single candidate or signaling will be beneficial for an HR-NB cure. We must develop efficient drug deliverables for functional targets, which could be integrated and advance clinical therapy. Fittingly, the looming evidence indicated an aggressive evolution of promising novel and integrative targets, development of efficient drugs, and improvised strategies for HR-NB treatment.
Collapse
Affiliation(s)
| | - Terence Herman
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Stephenson Cancer Center, Oklahoma City, USA
| | | |
Collapse
|
21
|
Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis 2020; 11:580. [PMID: 32709863 PMCID: PMC7381619 DOI: 10.1038/s41419-020-02772-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lingling Wang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Haixia Li
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Xiulan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| |
Collapse
|
22
|
Da CM, Gong CY, Nan W, Zhou KS, Wu ZL, Zhang HH. The role of long non-coding RNA MIAT in cancers. Biomed Pharmacother 2020; 129:110359. [PMID: 32535389 DOI: 10.1016/j.biopha.2020.110359] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), a kind of non-coding single-strand RNAs, play an important role as carcinogenic genes or tumor suppressors in the development of human cancer. Myocardial infarction-associated transcript (MIAT) was first identified as a lncRNA in 2006 and originally isolated as a candidate gene for myocardial infarction. Later, it was reported that MIAT exhibits regulatory effects on the human cell cycle. Since its discovery, MIAT has also been identified as a carcinogenic regulator in many malignant tumors. High expression of MIAT is related to the clinicopathological characteristics of cancer patients. It can also regulate cell proliferation, invasion, metastasis, and anti-apoptosis through a variety of mechanisms. Therefore, MIAT is considered a potential biomarker and therapeutic target in cancer. In this review, we summarize the biological function, mechanism, and potential clinical significance of MIAT during tumorigenesis.
Collapse
Affiliation(s)
- Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Yang Gong
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Wei Nan
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China
| | - Kai-Sheng Zhou
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
23
|
Wang S. Investigation of long non-coding RNA expression profiles in patients with post-menopausal osteoporosis by RNA sequencing. Exp Ther Med 2020; 20:1487-1497. [PMID: 32742382 PMCID: PMC7388310 DOI: 10.3892/etm.2020.8881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the implication of long non-coding RNA (lncRNA) expression profiles in post-menopausal osteoporosis (PMOP). A total of 10 patients with PMOP and 10 age-matched healthy post-menopausal females as controls were consecutively enrolled. Their peripheral blood mononuclear cells were obtained and lncRNA as well as mRNA expression profiles were detected by RNA sequencing, followed by bioinformatics analyses. The lncRNA expression profiles were able to distinguish patients with PMOP from controls based on principal component analysis and heatmap analysis. In total, 254 upregulated lncRNAs and 359 downregulated lncRNAs were identified in patients with PMOP vs. controls. The top 5 upregulated lncRNAs were RP11-704M14.1, RP11-754N21.1, RP11-408E5.5, ANKRD26P3 and TPTEP1. The top 5 downregulated lncRNAs were RP11-310E22.4, RP11-326K13.4, FABP5P1, SERPINB9P1 and RPL13P2. Based on the interaction of dysregulated lncRNAs and mRNAs by RNA sequencing, functional annotations were then performed. Gene Ontology enrichment analysis revealed that the dysregulated lncRNAs were enriched in terms including apoptotic process and positive regulation of NF-κB transaction, and Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment in PMOP-associated signaling pathways, including osteoclast differentiation, tumor necrosis factor signaling pathway and mitogen-activated protein kinase signaling pathway. In addition, the regulatory network and circos graph further indicated the implication of lncRNA expression profiles in PMOP via interactions with mRNAs. In conclusion, the present study suggested that aberrant lncRNA expression is deeply involved in the pathogenesis of PMOP by affecting osteoclast differentiation, inflammation and apoptotic processes.
Collapse
Affiliation(s)
- Shaohai Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| |
Collapse
|
24
|
Meng X, Fang E, Zhao X, Feng J. Identification of prognostic long noncoding RNAs associated with spontaneous regression of neuroblastoma. Cancer Med 2020; 9:3800-3815. [PMID: 32216054 PMCID: PMC7286466 DOI: 10.1002/cam4.3022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The association between long noncoding RNAs (lncRNAs) and spontaneous regression of neuroblastoma (NB) has rarely been investigated and remains unknown. OBJECTIVE To identify prognostic lncRNAs involved in the spontaneous regression of NB. METHODS Differential expression analyses were performed between those samples with an outcome of death in stage 4 NB group and those samples with an outcome of survival in stage 4S NB group in two independent public datasets, respectively. Univariate Cox proportional hazard regression survival analysis was performed in each of the entire cohort to identify those lncRNAs significantly associated with overall survival (OS). Those lncRNAs independently associated with OS were then identified by multivariate Cox survival analysis and used to construct an lncRNA risk score. RESULTS A total of 20 differentially expressed and survival-related lncRNAs were identified sharing between the two independent cohorts. The expression of each of these 20 lncRNAs was significantly correlated with the expression of NTRK1, which is a well-known factor involved in NB spontaneous regression. Four lncRNAs (LNC00839, FIRRE, LOC283177, and LOC101928100) were identified to be significantly associated with survival independent with each other and a four-lncRNA signature risk score was constructed. Patients with high lncRNA signature risk score had a significantly poorer OS and event-free survival than those with low lncRNA signature risk score. The four-lncRNA signature has a good performance in predicting survival independent with MYCN amplification (nonamplified vs amplified), age status (<18 months vs ≥18 months), risk status (low risk vs high risk), and International Neuroblastoma Staging System (INSS) stage (INSS 1/2/3/4S vs INSS 4). CONCLUSIONS We identified 20 survival-related lncRNAs that might be associated with the spontaneous regression of NB and developed a four-lncRNA signature risk score. The four-lncRNA signature is an independent prognostic factor for survival of NB patients.
Collapse
Affiliation(s)
- Xinyao Meng
- Department of Pediatric SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Erhu Fang
- Department of Pediatric SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiang Zhao
- Department of Pediatric SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiexiong Feng
- Department of Pediatric SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
25
|
Zhou S, Xu A, Song T, Gao F, Sun H, Kong X. lncRNA MIAT Regulates Cell Growth, Migration, and Invasion Through Sponging miR-150-5p in Ovarian Cancer. Cancer Biother Radiopharm 2020; 35:650-660. [PMID: 32186927 DOI: 10.1089/cbr.2019.3259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: MIAT (myocardial infarction-associated transcript) regulates cell proliferation, apoptosis, and metastasis in several cancers. In this study, the authors aimed to explore the role of MIAT in ovarian cancer. Materials and Methods: The expression of MIAT in ovarian cancer subtypes, normal human ovarian surface epithelial and ovarian cancer cell lines was measured by qualitative real-time polymerase chain reaction (qRT-PCR). OVCAR3 and SKOV3 cells were transfected with MIAT overexpression plasmid or siMIAT. The cell growth ability was then evaluated by CCK-8 and colony formation assays. The cell migration and invasion rate were separately measured by wound-healing and transwell assays. The levels of epithelial-mesenchymal transition (EMT)-associated markers were evaluated by Western blotting. MIAT sponging miR-150-5p was predicted by starBase and confirmed by dual-luciferase reporter assays. The expression of miR-150-5p in OVCAR3 and SKOV3 cells with MIAT overexpression or knockdown, and in ovarian cancer subtypes was also measured by qRT-PCR. Further analyses confirmed the role of MIAT sponging miR-150-5p in ovarian cancer cells. Results: MIAT was highly expressed in mesenchymal subtype ovarian cancer tissues and ovarian cancer cells. In OVCAR3 and SKOV3 cells, overexpression of MIAT promoted, and knockdown of MIAT suppressed the cell growth, migration, invasion, and EMT. miR-150-5p was sponged and regulated by MIAT. miR-150-5p was downregulated in mesenchymal subtype ovarian cancer. Suppression of cell migration, invasion, and EMT caused by miR-150-5p overexpression was rescued by MIAT overexpression. Conclusions: MIAT acts as an oncogene in ovarian cancer cells through sponging miR-150-5p. MIAT or miR-150-5p expression might be a potential prognostic biomarker for ovarian cancer patients. MIAT and miR-150-5p are potential therapeutic targets in treatment of ovarian cancer.
Collapse
Affiliation(s)
- Suiyang Zhou
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aili Xu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tiefang Song
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fei Gao
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haizhu Sun
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xianchao Kong
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
26
|
Guo L, Lu J, Gao J, Li M, Wang H, Zhan X. The function of SNHG7/miR-449a/ACSL1 axis in thyroid cancer. J Cell Biochem 2020; 121:4034-4042. [PMID: 31961004 DOI: 10.1002/jcb.29569] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Thyroid cancer (TC) has been characterized as the most common malignant malady of the endocrine system. Small nucleolar RNA host gene 7 (SNHG7) has been reported to serve as a key regulator in a large number of human cancer types, but its role in TC and the underlying regulatory mechanism have never been evaluated yet. The present study indicated that the expression of SNHG7 was markedly higher in TC cell lines. Knockdown of SNHG7 led to a suppression of TC cell progression and migration. Acyl-CoA synthetase long-chain family member 1 (ACSL1) has also been demonstrated as an oncogene in many cancers. Herein an inhibition of ACSL1 after SNHG7 knockdown was captured. Further, the suppressing effects of SNHG7 knockdown on TC cell processes were counteracted by ACSL1 overexpression. Data from online bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays validated the interaction between microRNA-449a (miR-449a) and SNHG7 or ACSL1. It was also verified that SNHG7 sequestered miR-449a and therefore elevated ACSL1 expression levels. To conclude, the current study indicated that SNHG7 promoted proliferation and migration of TC cells by sponging miR-449a and therefore upregulating ACSL1. The present study may provide more explorations about the molecular regulation mechanism of long noncoding RNAs in TC progression.
Collapse
Affiliation(s)
- Linchi Guo
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,General Medicine, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia, China
| | - Jixuan Lu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,General Medicine, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia, China
| | - Jie Gao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,General Medicine, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia, China
| | - Mingyang Li
- Department of Endocrinology, Affiliated Hospital of Chifeng Medical College, Chifeng, Inner Mongolia, China
| | - Huihui Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, Heilongjiang, China
| | - Xiaorong Zhan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
27
|
Deng W, Fan C, Shen R, Wu Y, Du R, Teng J. Long noncoding MIAT acting as a ceRNA to sponge microRNA-204-5p to participate in cerebral microvascular endothelial cell injury after cerebral ischemia through regulating HMGB1. J Cell Physiol 2019; 235:4571-4586. [PMID: 31628679 DOI: 10.1002/jcp.29334] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
This study is applied to the investigation of the long noncoding RNA myocardial infarction associated transcript's (MIAT's) role in regulating the expression of high-mobility group box 1 (HMGB1) in cerebral microvascular endothelial cell (CMEC) injury after cerebral ischemia by serving as a competitive endogenous RNA (ceRNA) to sponge microRNA-204-5p (miR-204-5p). The cerebral ischemia model of middle cerebral artery occlusion (MCAO) in rats was established by the suture method, in which rats were injected with empty plasmids and MIAT siRNA plasmids. The cerebral ischemia injury model in vitro was established through oxygen glucose deprivation (OGD) in primary cultured CMECs in rats. The cells were transfected with empty plasmids and MIAT siRNA plasmids. The MIAT/miR-204-5p/HMGB1 axis' function in damage and angiogenesis of CMECs were explored. The binding site between MIAT and miR-204-5p along with that between miR-204-5p and HMGB1 was determined. MIAT was overexpressed in MCAO rats' brain tissue and inhibited MIAT attenuated the injury of brain tissue in MCAO rats. Inhibition of MIAT promoted angiogenesis, promoted miR-204-5p expression and inhibited HMGB1 expression in brain tissue of MCAO rats. Inhibition of MIAT reduced CMEC damage, induced angiogenesis of CMECs, increased the number of surviving neurons, promoted miR-204-5p expression and inhibited HMGB1 expression in CMECs treated with OGD. MIAT promoted HMGB1 expression by competitive binding to miR-204-5p to regulate the injury of CMECs after cerebral ischemia. Our study showed that MIAT promoted HMGB1 expression by competitively binding to miR-204-5p to regulate the injury of CMECs after cerebral ischemia.
Collapse
Affiliation(s)
- Wenjing Deng
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenghe Fan
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruile Shen
- The Neurology Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yanzhi Wu
- The Neurology Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Du
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfang Teng
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:1015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 568] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|