1
|
Chen SC, Jiang HY, Liao SR, Chen TX, Wang XQ. Complete mitochondrial genome of Stethoconus japonicus (Hemiptera: Miridae): Insights into the evolutionary traits within the family Miridae. Gene 2024; 891:147830. [PMID: 37758005 DOI: 10.1016/j.gene.2023.147830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
The mitochondrial (mt) genome sequence of insects possesses numerous evolutionary traits. To better understand the evolution of mt genomes within the family Miridae, the complete mt genome of the predatory Japanese plant bug Stethoconus japonicus Schumacher was sequenced before undertaking a comparative analysis of all reported plant bug mt genomes. The mt genome of S. japonicus is a closed-circular and double-stranded DNA molecule of 16,274 bp (GenBank: MK341530), which consists of 13 protein-coding genes (PCGs), 2 rRNAs, 22 tRNAs and a putative control region (CR). Consistent with other plant bugs, the mt genome of S. japonicus is strongly AT-biased (73.49 %) with A-skewed (0.202) and C-skewed (-0.248). All 13 PCGs initiate translation using ATN codons and TAA served as complete stop codons for eight PCGs, which as incomplete stop codon "T-" for cox1, nad1, nad5-6 and "TA-" for cox2. Regarding other features, all 22 tRNAs could be folded into typical cloverleaf secondary structures. The control region is 1,717 bp and contains a long tandem repeat sequence of a 165 bp unit repeated six times. Similar sequence with variable number of tandemly repeated units from intra-genus CRs is a distinct characteristic of plant bug mt genomes. Phylogenetic relationships of 15 bugs were eventually analyzed based on Maximum likelihood (ML) and Bayesian inference (BI) methods using 17 mt genome sequences. In the phylogenetic trees, species from a same genus or subfamily are clustered into a branch with high supporting values.and the result suggest that Deraeocorinae is more closely related to Mirinae than Bryocorinae. Finally, this study revealed that mutation of tRNA anticodon is a useful phylogenetic marker that could be of significance for studies of evolutionary patterns.
Collapse
Affiliation(s)
- Shi-Chun Chen
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, PR China.
| | - Hong-Yan Jiang
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, PR China.
| | - Shu-Ran Liao
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, PR China.
| | - Ting-Xu Chen
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, PR China.
| | - Xiao-Qing Wang
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, PR China.
| |
Collapse
|
2
|
Feng S, Pozzi A, Stejskal V, Opit G, Yang Q, Shao R, Dowling DK, Li Z. Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biol 2022; 20:7. [PMID: 34996453 PMCID: PMC8742463 DOI: 10.1186/s12915-021-01218-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background A single circular mitochondrial (mt) genome is a common feature across most metazoans. The mt-genome includes protein-coding genes involved in oxidative phosphorylation, as well as RNAs necessary for translation of mt-RNAs, whose order and number are highly conserved across animal clades, with few known exceptions of alternative mt-gene order or mt-genome architectures. One such exception consists of the fragmented mitochondrial genome, a type of genome architecture where mt-genes are split across two or more mt-chromosomes. However, the origins of mt-genome fragmentation and its effects on mt-genome evolution are unknown. Here, we investigate these origin and potential mechanisms underlying mt-genome fragmentation, focusing on a genus of booklice, Liposcelis, which exhibits elevated sequence divergence, frequent rearrangement of mt-gene order, and fragmentation of the mt genome, and compare them to other Metazoan clades. Results We found this genus Liposcelis exhibits very low conservation of mt-gene order across species, relative to other metazoans. Levels of gene order rearrangement were, however, unrelated to whether or not mt-genomes were fragmented or intact, suggesting mitochondrial genome fragmentation is not affecting mt-gene order directly. We further investigated possible mechanisms underpinning these patterns and revealed very high conservation of non-coding sequences at the edges of multiple recombination regions across populations of one particular Liposcelis species, supportive of a hypothesis that mt-fragmentation arises from recombination errors between mt-genome copies. We propose these errors may arise as a consequence of a heightened mutation rate in clades exhibiting mt-fragmentation. Consistent with this, we observed a striking pattern across three Metazoan phyla (Arthropoda, Nematoda, Cnidaria) characterised by members exhibiting high levels of mt-gene order rearrangement and cases of mt-fragmentation, whereby the mt-genomes of species more closely related to species with fragmented mt-genomes diverge more rapidly despite experiencing strong purifying selection. Conclusions We showed that contrary to expectations, mt-genome fragmentation is not correlated with the increase in mt-genome rearrangements. Furthermore, we present evidence that fragmentation of the mt-genome may be part of a general relaxation of a natural selection on the mt-genome, thus providing new insights into the origins of mt-genome fragmentation and evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01218-7.
Collapse
Affiliation(s)
- Shiqian Feng
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Andrea Pozzi
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Vaclav Stejskal
- Crop Research Institute, Drnovská 507, 161 06, Prague, Czech Republic.,Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00, Prague, Czech Republic
| | - George Opit
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, 74078, USA
| | - Qianqian Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Renfu Shao
- GeneCology Research Centre, Centre for Animal Health Innovation, School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4556, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Sweet AD, Johnson KP, Cao Y, de Moya RS, Skinner RK, Tan M, Virrueta Herrera S, Cameron SL. Structure, gene order, and nucleotide composition of mitochondrial genomes in parasitic lice from Amblycera. Gene 2020; 768:145312. [PMID: 33220346 DOI: 10.1016/j.gene.2020.145312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022]
Abstract
Parasitic lice have unique mitochondrial (mt) genomes characterized by rearranged gene orders, variable genome structures, and less AT content compared to most other insects. However, relatively little is known about the mt genomes of Amblycera, the suborder sister to all other parasitic lice. Comparing among nine different genera (including representative of all seven families), we show that Amblycera have variable and highly rearranged mt genomes. Some genera have fragmented genomes that vary considerably in length, whereas others have a single mt chromosome. Notably, these genomes are more AT-biased than most other lice. We also recover genus-level phylogenetic relationships among Amblycera that are consistent with those reported from large nuclear datasets, indicating that mt sequences are reliable for reconstructing evolutionary relationships in Amblycera. However, gene order data cannot reliably recover these same relationships. Overall, our results suggest that the mt genomes of lice, already know to be distinctive, are even more variable than previously thought.
Collapse
Affiliation(s)
- Andrew D Sweet
- Department of Entomology, Purdue University, West Lafayette, IN, USA; Department of Biological Sciences, Arkansas State University, State University, AR, USA.
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Yanghui Cao
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Robert S de Moya
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Department of Entomology, University of Illinois, Urbana, IL, USA
| | - Rachel K Skinner
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Department of Entomology, University of Illinois, Urbana, IL, USA
| | - Milton Tan
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Stephany Virrueta Herrera
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, USA
| | - Stephen L Cameron
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|