1
|
He X, Deng G, Zhang Z, Mao H, Cai L. Enhanced coloration and functionality of wool fabric by Hydroxypropyl-β-cyclodextrin coated magnetic nanoparticles. ARAB J CHEM 2024; 17:105923. [DOI: 10.1016/j.arabjc.2024.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
2
|
Edo GI, Yousif E, Al-Mashhadani MH. Modified chitosan: Insight on biomedical and industrial applications. Int J Biol Macromol 2024; 275:133526. [PMID: 38960250 DOI: 10.1016/j.ijbiomac.2024.133526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Chitosan (CS), a by -product of chitin deacetylation can be useful in a broad range of purposes, to mention agriculture, pharmaceuticals, material science, food and nutrition, biotechnology and of recent, in gene therapy. Chitosan is a highly desired biomolecule due to the existence of many sensitive functional groups inside the molecule and also because of its net cationicity. The latter provides flexibility for creating a wide range of derivatives for particular end users across various industries. This overview aims to compile some of the most recent research on the bio-related applications that chitosan and its derivatives can be used for. However, chitosan's reactive functional groups are amendable to chemical reaction. Modifying the material to show enhanced solubility, a greater range of application options and pH-sensitive targeting and others have been a major focus of chitosan research. This review describes the modifications of chitosan that have been made to improve its water solubility, pH sensitivity, and capacity to target chitosan derivatives. Applying the by-products of chitosan as antibacterial, in targeting, extended release and as delivery systems is also covered. The by-products of chitosan will be important and potentially useful in developing new biomedical drugs in time to come.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
3
|
Braniša J, Koóšová K, Porubská M. Selective Modifications of Sheep Wool Usable in Non-Textile Applications. Polymers (Basel) 2024; 16:1380. [PMID: 38794573 PMCID: PMC11125863 DOI: 10.3390/polym16101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The traditional textile use of wool as a valuable renewable material needs alternative applications in order to, besides sheep milk and meat, valorize currently unnecessary wool. Each type of product containing sheep wool requires wool with customized properties. Finding suitable physical and chemical modifications needed to develop new products while minimizing harmful side effects is a challenge for scientists. The presented review provides a brief overview of works published over the last decade associated with innovative wool scouring, dyeing, antifelting, and modification of its structure without the ambition to present complete, detailed data.
Collapse
Affiliation(s)
| | | | - Mária Porubská
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01 Nitra, Slovakia; (J.B.); (K.K.)
| |
Collapse
|
4
|
Arvand MP, Moghimi A, Salehi N. A novel removal of Ni 2+ ions from water solutions using dispersive solid-phase extraction method with nano Fe 3O 4/chitosan-acrylamide hydrogel. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:136. [PMID: 38200248 DOI: 10.1007/s10661-023-12149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/18/2023] [Indexed: 01/12/2024]
Abstract
The effluent release containing heavy metals as Ni2+ ions has drastic risks to both the natural environment and human health. In this research, the nano Fe3O4/chitosan-acrylamide hydrogel was prepared as a novel nano sorbent for dispersive solid-phase extraction of Ni2+ ions and applied to the water sample solution. The pH, amount and type of elution solvent, the extraction time, etc. were optimized to improve the efficiency of the proposed method. Analytical parameters such as concentration factor and relative standard deviation (%) were achieved as 33.3 and 1.8%, respectively. The capacity in equilibrium sorption was calculated at 22.54 mg g-1. Furthermore, to estimate the adsorption mode, Freundlich, Langmuir, and Temkin models were fitted with experimental isotherm data. Besides, to check the basic process of the metal adsorption mechanism, pseudo-first-order, pseudo-second-order, and Roginsky-Zeldovich models were investigated and the results were fitted with the pseudo-second-order model. The value of change in entropy (⊿S) obtained is -65.24 (J(mol K)-1). Negative values of change in enthalpy, ⊿H in (kJ mol-1) is -24.45 (kJ mol-1) which indicates both physical and chemical adsorptions involved in the process of adsorption. Finally, the nano Fe3O4/chitosan-acrylamide hydrogel exhibited high performance to remove the Ni2+ ions from water sample solution.
Collapse
Affiliation(s)
| | - Ali Moghimi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Narges Salehi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Shi F, Wang M, Fang K, Zhao Z, Zhao H, Chen W. Fabrication of Chitosan-Loaded Multifunctional Wool Fabric for Reactive Dye Digital Inkjet Printing by Schiff Base Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10081-10088. [PMID: 35960200 DOI: 10.1021/acs.langmuir.2c00961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving the development of high-value multifunctional wool fabrics was essential to satisfy diverse needs. Considering the various characteristics of chitosan macromolecules, herein, a padding-cross-linking process was adopted and then multifunctional wool fabrics with outstanding printing effects, shrink resistance, and antibacterial properties were fabricated. The test results showed that chitosan macromolecules loaded successfully on the wool fiber surface by Schiff base reaction. Wool fabrics changed from hydrophobic to hydrophilic due to the existence of chitosan macromolecules. The color strength (K/S value) of the reactive dye inkjet-printed wool fabric was greatly increased from 20.48 to 26.6. The area shrinkage of final samples was 2.53%, which was exceedingly lower than that of the original wool (10.96%). Moreover, the chitosan macromolecules with reactive amino groups endowed wool fabrics with certain antibacterial properties against E. coli and S. aureus. Generally, this study provided guidance for manufacturing multifunctional digital inkjet-printed wool products in mass production.
Collapse
Affiliation(s)
- Furui Shi
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mengyue Wang
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kuanjun Fang
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an 271001, China
| | - Zhihui Zhao
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hongzhi Zhao
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Weichao Chen
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an 271001, China
| |
Collapse
|
6
|
Chen Q, Qi Y, Jiang Y, Quan W, Luo H, Wu K, Li S, Ouyang Q. Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Mar Drugs 2022; 20:md20080536. [PMID: 36005539 PMCID: PMC9410415 DOI: 10.3390/md20080536] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, which is derived from chitin, is the only known natural alkaline cationic polymer. Chitosan is a biological material that can significantly improve the living standard of the country. It has excellent properties such as good biodegradability, biocompatibility, and cell affinity, and has excellent biological activities such as antibacterial, antioxidant, and hemostasis. In recent years, the demand has increased significantly in many fields and has huge application potential. Due to the poor water solubility of chitosan, its wide application is limited. However, chemical modification of the chitosan matrix structure can improve its solubility and biological activity, thereby expanding its application range. The review covers the period from 1996 to 2022 and was elaborated by searching Google Scholar, PubMed, Elsevier, ACS publications, MDPI, Web of Science, Springer, and other databases. The various chemical modification methods of chitosan and its main activities and application research progress were reviewed. In general, the modification of chitosan and the application of its derivatives have had great progress, such as various reactions, optimization of conditions, new synthetic routes, and synthesis of various novel multifunctional chitosan derivatives. The chemical properties of modified chitosan are usually better than those of unmodified chitosan, so chitosan derivatives have been widely used and have more promising prospects. This paper aims to explore the latest progress in chitosan chemical modification technologies and analyze the application of chitosan and its derivatives in various fields, including pharmaceuticals and textiles, thus providing a basis for further development and utilization of chitosan.
Collapse
Affiliation(s)
- Qizhou Chen
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yi Qi
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Yuwei Jiang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiyan Quan
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Hui Luo
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| | - Kefeng Wu
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Sidong Li
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Qianqian Ouyang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| |
Collapse
|
7
|
Hu Q, Wang W, Ma T, Zhang C, Kuang J, Wang R. Anti-UV and hydrophobic dual-functional coating fabrication for flame retardant polyester fabrics by surface-initiated PET RAFT technique. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Facile fabrication of durable antibacterial and anti-felting wool fabrics with enhanced comfort via novel N-phenylmaleimide finishing. Bioprocess Biosyst Eng 2022; 45:921-929. [DOI: 10.1007/s00449-022-02710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/12/2022] [Indexed: 11/02/2022]
|
9
|
Application of Achillea millefolium extract as a reducing agent for synthesis of silver nanoparticles (AgNPs) on the cotton: antibacterial, antioxidant and dyeing studies. Biometals 2022; 35:313-327. [PMID: 35257280 DOI: 10.1007/s10534-022-00366-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
Abstract
The phyto-synthesis of silver nanoparticles and cotton dyeing with natural colorants can reduce the environmental impact of the process considerably. In this study, the extraction of natural colorants from Achillea millefolium petals was optimized by ultrasound technique. The AMP extract was applied for synthesis of silver nanoparticles (Ag NPs) on the cotton fabrics. The dyeing, antibacterial and antioxidant characteristics of cotton samples were investigated to optimize the process and evaluate its efficiency. The AMP extract had good substantivity towards cotton fabrics and the presence of tannic acid, as an environmentally-friendly mordant, further improved the absorption of AMP dye. The antibacterial and antioxidant activities of the dyed samples with AMP extract of were 50%and 60%, respectively. The addition of TA and Ag enhanced the antibacterial and antioxidant activities on the cotton samples to over 99%.
Collapse
|
10
|
Kahali P, Montazer M, Kamali Dolatabadi M. Attachment of Tragacanth gum on polyester fabric through the synthesis of iron oxide gaining novel biological, physical, and thermal features. Int J Biol Macromol 2022; 207:193-204. [PMID: 35248610 DOI: 10.1016/j.ijbiomac.2022.02.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
This study focuses on polyester fabric modification to produce environmentally-friendly multifunctional fabrics for varied applications. The nanoparticles of iron oxide were achieved from ferrous sulfate solution under alkaline conditions and applied to Tragacanth gum to form an efficient layer on the polyester surface. The synthesis of Fe3O4 nanoparticles with a crystal size of 12 nm was approved in the XRD spectra and iron oxide/Tragacanth gum nanocomposites with an agglomerated size of about 62 nm were confirmed by the SEM and EDX techniques. The formation of hydroxyl and iron oxide bands was observed in the FTIR and XPS patterns. The superparamagnetic behavior of treated samples exhibited by VSM with a magnetic saturation of 0.86 emu/g. The products showed an antibacterial activity (95 and 91%) toward Gram-positive and -negative bacteria. The absorbance intensity of methylene blue decreased from 2.6 to 1.6 by the treated sample. The synthesized nanoparticles on the treated surface indicated a lower release of iron ions and cell toxicity. The rate of cell duplication increased under a magnetic field with 60 Hz and 0.5 mT for 20 min/day. The product color changed from white to a brownish hue and the wetting capacity and thermal ability increased.
Collapse
Affiliation(s)
- P Kahali
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M Montazer
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - M Kamali Dolatabadi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Jaiswal S, Dutta PK, Kumar S, Koh J, Lee MC, Lim JW, Pandey S, Garg P. Synthesis, characterization and application of chitosan-N-(4-hydroxyphenyl)-methacrylamide derivative as a drug and gene carrier. Int J Biol Macromol 2022; 195:75-85. [PMID: 34883163 DOI: 10.1016/j.ijbiomac.2021.11.204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023]
Abstract
The aim of this study was to develop a green method to fabricate a novel CS modified N-(4-hydroxyphenyl)- methacrylamide conjugate (CSNHMA) and to evaluate its biomedical potential. CSNHMA has been prepared by a simple method via aza Michael addition reaction between CS and N- (4-hydroxyphenyl)-methacrylamide (NHMA) in ethanol. Its structural and morphological properties were characterized by various analysis techniques. The obtained results confirmed that a highly porous network structure of CSNHMA was successfully synthesized via aza Michael addition reaction. Consequently, it was analyzed as a drug and gene carrier. CSNHMA/pGL3 showed an enhanced buffering capacity due to the presence of NHMA moiety leading to higher transfection efficiency in all cancer cells (A549, HeLa and HepG2) as compared to native CS and Lipofectamine®. Therefore, these findings clearly support the possibility of using CSNHMA as a good transfection agent. For in vitro drug release study, we prepared CSNHMA nanoparticles (NPs) and curcumin loaded CSNHMA NPs of size <230 nm respectively via the non-toxic ionic gelation route and the encapsulation efficiency of drug was found to be 77.03%. In vitro drug release studies demonstrated a faster and sustained release of curcumin loaded CSNHMA NPs at pH 5.0 compared to physiological pH.
Collapse
Affiliation(s)
- Shefali Jaiswal
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - Pradip Kumar Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - Santosh Kumar
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Joonseok Koh
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Myung Chul Lee
- Department of Biosystems & Biomaterial Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jae Woon Lim
- Department of Biosystems & Biomaterial Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Shambhavi Pandey
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Pankaj Garg
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Wang A, Liu F, Xia L, Zhang C, Zhou S, Fu Z, Wang Y, Xu W. Solvent assisted dyeing of wool fibers with reactive dyes in a ternary solvent system for protecting fibers against damage. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Improving the biofouling resistance of polyamide thin-film composite membrane via grafting polyacrylamide brush on the surface by in-situ atomic transfer radical polymerization. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Gupta M, Sheikh J, Annu, Singh A. An eco-friendly route to develop cellulose-based multifunctional finished linen fabric using ZnO NPs and CS network. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Effectuality of chitosan biopolymer and its derivatives during antioxidant applications. Int J Biol Macromol 2020; 164:1342-1369. [DOI: 10.1016/j.ijbiomac.2020.07.197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
|
16
|
Kumar D, Gihar S, Shrivash MK, Kumar P, Kundu PP. A review on the synthesis of graft copolymers of chitosan and their potential applications. Int J Biol Macromol 2020; 163:2097-2112. [PMID: 32949625 DOI: 10.1016/j.ijbiomac.2020.09.060] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Chitosan is an antimicrobial, biodegradable and biocompatible natural polymer, commercially derived from the partial deacetylation of chitin. Currently modified chitosan has occupied a major part of scientific research. Modified chitosan has excellent biotic characteristics like biodegradation, antibacterial, immunological, metal-binding and metal adsorption capacity and wound-healing ability. Chitosan is an excellent candidate for drug delivery, food packaging and wastewater treatment and is also used as a supporting object for cell culture, gene delivery and tissue engineering. Modification of pure chitosan via grafting improves the native properties of chitosan. Chitosan grafted copolymers exhibit high significance and are extensively used in numerous fields. In this review, modifications of chitosan through several graft copolymerization techniques such as free radical, radiation, and enzymatic were reported and the properties of grafted chitosan were discussed. This review also discussed the applications of grafted chitosan in the fields of drug delivery, food packaging, antimicrobial, and metal adsorption as well as dye removal.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Applied Chemistry, M J P Rohilkhand University, Bareilly 243006, UP, India; Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India.
| | - Sachin Gihar
- Department of Applied Chemistry, M J P Rohilkhand University, Bareilly 243006, UP, India
| | - Manoj Kumar Shrivash
- Department of Applied Scieneses, Indian Institute of Information Technology, Road Devghat, Jhalwa, Prayagraj, UP 2110151, India
| | - Pramendra Kumar
- Department of Applied Chemistry, M J P Rohilkhand University, Bareilly 243006, UP, India
| | - Patit Paban Kundu
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
| |
Collapse
|
17
|
Teaima MH, Elasaly MK, Omar SA, El-Nabarawi MA, Shoueir KR. Eco-friendly synthesis of functionalized chitosan-based nanoantibiotic system for potential delivery of linezolid as antimicrobial agents. Saudi Pharm J 2020; 28:859-868. [PMID: 32647488 PMCID: PMC7335826 DOI: 10.1016/j.jsps.2020.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
To obtain a healthy human being with beneficial microflora against different pathogenic infections, classical antibiotics with nanosized biomaterials were used to inhibit the growth of bacterium by their potent synergistic effect. Hence, this study planned to load an oxazolidinone antibiotic named linezolid (LD) onto functionalized chitosan (CN) with 3, 5- dinitrosalyslic acid (DA) via microwave synthesis without harsh condition. The exploring synergistic effect of linezolid (LD) with CN/DA controllable nanostructure was compact efflux-mediated methicillin-resistant Staphylococcus aureus (MRSA) burden and other selected bactericide Gram-positive ((S. aureus), Gram-negative (E. coli), Fungi (C. albicans), Yeast (A. niger), and E. faecalis. The obtained results showed that LD was incorporated into both the internal and external surface of the aggregated CN/DA nanosystem with an average diameter of 150 nm ± 4 hints of the drug loading. Owing to the nature of functionalized CN, the release efficiency attains 98.4% within 100 min. The designed LD@CN/DA exhibited inhibition zone 54 mm, 59 mm, 69 mm, 54 mm, 57 mm, and 24 mm against the tested microbes respectively rather than individual LD. The major target of the current research is achieved by using LD@CN/DA as a nanoantibiotic system that has exceptional consistently active against multi-resistant pathogens, in between MRSA which resist LD. Also, cell viability was performed even after three days of direct cell culture on the surface of the designed nanoantibiotic. The mechanism of microbial inhibition was correlated and rationalized to different charges and the presence of oxygen species against microbial infections. Our findings provide a deep explanation about nanostructured antibiotics design with enhanced potentially pathogen-specific activity.
Collapse
Affiliation(s)
- Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed K. Elasaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samia A. Omar
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kamel R. Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| |
Collapse
|
18
|
Protease and sodium alginate combined treatment of wool fabric for enhancing inkjet printing performance of reactive dyes. Int J Biol Macromol 2020; 146:959-964. [DOI: 10.1016/j.ijbiomac.2019.09.220] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/26/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
|
19
|
Hassan MM. Enhanced thermal stability, hydrophobicity, UV radiation resistance, and antibacterial properties of wool fabric treated with p-aminobenzenesulphonic acid. RSC Adv 2020; 10:17515-17523. [PMID: 35515614 PMCID: PMC9053736 DOI: 10.1039/d0ra02267e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/23/2020] [Indexed: 11/23/2022] Open
Abstract
Wool fibre is a popular fibre for the manufacture of apparel and floor coverings, but it does not have adequate thermal stability, antistatic, UV resistance, and antibacterial properties that are required for some applications, such as outerwear and hospital gowns. In this work, a wool fabric was treated with para-aminobenzenesulphonic acid (ABSA) by the oxidative polymerisation method and its effect on the thermal stability, UV radiation resistance, electrical conductivity and antibacterial properties of the treated fabric was systematically evaluated. It was found that the ABSA treatment had synergistic effects on the various functional properties of the treated fabric. The ABSA treatment not only made the fabric antibacterial but also enhanced its UV radiation absorption capability, surface hydrophobicity, electro-conductivity, tensile strength, and thermal stability. The maximum degradation temperature of the wool fibre increased from 339.5 °C to 349.6 °C and the UV-B transmission through the fabric at 290 nm reduced to 1.5%. The surface hydrophobicity of the treated fabric samples also improved as the surface contact angle of the fabric increased from 119.5° for the untreated to 131.7° for the fabric treated with 4% ABSA. The surface electrical resistance decreased from 1200 × 109 to 484 × 109 Ohm cm−1, and the treated fabric also showed excellent antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae. The developed treatment could be used in the textile industry as an energy-efficient process for the multi-functionalisation of wool and other polyamide fibres. The treatment with para-aminobenzenesulphonic acid produced a multifunctional wool fabric with enhanced hydrophobicity, thermal stability, UV resistance, and antibacterial properties.![]()
Collapse
|
20
|
Treating wool fibers with chitosan-based nano-composites for enhancing the antimicrobial properties. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01203-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|