1
|
Mo H, Li Z, Liu W, Wei J, Zhan M, Chen X, Sun J, Yang H, Du G. Biochemical characterization of the catalytic domain from a novel hyperthermophilic β-glucanase and its application for KOS production. Int J Biol Macromol 2025; 297:139622. [PMID: 39793795 DOI: 10.1016/j.ijbiomac.2025.139622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Konjac oligosaccharide (KOS) exhibits various biological activities, and hyperthermophilic β-glucanases offer many advantages for KOS production from konjac glucanmannan (KGM). In this study, a novel β-glucanase, EG003, belonging to the glycosyl hydrolase (GH) subfamily 5_1, was predicted from the genome of the a Thermus strain. The recombinant EG003 and its catalytic domain, EG003A, were successfully expressed and characterized. EG003A displayed maximum activity at 95 °C and pH 8.0, with a specific activity of 1047.6 U/mg and retained approximately 50 % activity after 6 h at 90 °C. The enzyme exhibited both β-1,4-glucanase and β-1,3-1,4-glucanase activity with KGM and sodium carboxymethylcellulose (CMC), lichenan and oat β-glucan as substrates. Degree of polymerization (DP) 3 was the major oligosaccharide from the hydrolysis of KGM, while DP3 and DP4 were predominant products from the hydrolysis of oat β-glucan. Molecular docking analyses revealed that the catalytic mechanism of EG003A is consistent with those of other reported GH5_1 β-glucanases. Additionally, the viscosity of 500 mL solution of 1 % KGM decreased rapidly from 31,193 mPa.s to 4.50 mPa.s in 3 min with 30 U EG003A. This study provides an efficient hyperthermophilic β-glucanase with promising application for KOS production.
Collapse
Affiliation(s)
- Haiying Mo
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Zhihao Li
- Chongqing Polytechnic Institute, School of Health, Chongqing, China
| | - Wang Liu
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Jirui Wei
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Mengtao Zhan
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Xin Chen
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Jingxian Sun
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Haiying Yang
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China.
| | - Gang Du
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Coines J, Cuxart I, Teze D, Rovira C. Computer Simulation to Rationalize “Rational” Engineering of Glycoside Hydrolases and Glycosyltransferases. J Phys Chem B 2022; 126:802-812. [PMID: 35073079 PMCID: PMC8819650 DOI: 10.1021/acs.jpcb.1c09536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Glycoside hydrolases
and glycosyltransferases are the main classes
of enzymes that synthesize and degrade carbohydrates, molecules essential
to life that are a challenge for classical chemistry. As such, considerable
efforts have been made to engineer these enzymes and make them pliable
to human needs, ranging from directed evolution to rational design,
including mechanism engineering. Such endeavors fall short and are
unreported in numerous cases, while even success is a necessary but
not sufficient proof that the chemical rationale behind the design
is correct. Here we review some of the recent work in CAZyme mechanism
engineering, showing that computational simulations are instrumental
to rationalize experimental data, providing mechanistic insight into
how native and engineered CAZymes catalyze chemical reactions. We
illustrate this with two recent studies in which (i) a glycoside hydrolase
is converted into a glycoside phosphorylase and (ii) substrate specificity
of a glycosyltransferase is engineered toward forming O-, N-, or S-glycosidic bonds.
Collapse
Affiliation(s)
- Joan Coines
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Irene Cuxart
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - David Teze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
4
|
Mandeep, Liu H, Shukla P. Synthetic Biology and Biocomputational Approaches for Improving Microbial Endoglucanases toward Their Innovative Applications. ACS OMEGA 2021; 6:6055-6063. [PMID: 33718696 PMCID: PMC7948214 DOI: 10.1021/acsomega.0c05744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2023]
Abstract
Microbial endoglucanases belonging to the β-1-4 glycosyl hydrolase family are useful enzymes due to their vast industrial applications in pulp and paper industries and biorefinery. They convert lignocellulosic substrates to soluble sugars and help in the biodegradation process. Various biocomputational tools can be utilized to understand the catalytic activity, reaction kinetics, complexity of active sites, and chemical behavior of enzyme complexes in reactions. This might be helpful in increasing productivity and cost reduction in industries. The present review gives an overview of some interesting aspects of enzyme design, including computational techniques such as molecular dynamics simulation, homology modeling, mutational analysis, etc., toward enhancing the quality of these enzymes. Moreover, the review also covers the aspects of synthetic biology, which could be helpful in faster and reliable development of useful enzymes with desired characteristics and applications. Finally, the review also deciphers the utilization of endoglucanases in biodegradation and emphasizes the use of diversified protein engineering tools and the modification of metabolic pathways for enzyme engineering.
Collapse
Affiliation(s)
- Mandeep
- Enzyme
Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Hao Liu
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pratyoosh Shukla
- Enzyme
Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
- School
of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
A linker of the proline-threonine repeating motif sequence is bimodal. J Mol Model 2020; 26:178. [PMID: 32562031 DOI: 10.1007/s00894-020-04434-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
The linker of the endoglucanase from Xanthomonas campestris pv. campestris ((PT)12) has a specific sequence, a repeating proline-threonine motif. In order to understand its role, it has been compared to a regular sequence linker, in this work-the cellobiohydrolase 2 from Trichoderma reesei (CBH2). Elastic properties of the two linkers have been estimated by calculating free energy profile along the linker length from an enhanced sampling molecular dynamics simulation. The (PT)12 exhibits more pronounced elastic behaviour than CBH2. The PT repeating motif results in a two-mode energy profile which could be very useful in the enzyme motions along the substrate during hydrolytic catalysis.
Collapse
|