1
|
Kumar A, Mahapatra S, Nayak L, Biswal M, Sahoo U, Lal MK, Nayak AK, Pati K. Tuber crops could be a potential food component for lowering starch digestibility and estimated glycemic index in rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8519-8528. [PMID: 38953558 DOI: 10.1002/jsfa.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Rice is considered a high estimated glycemic index (eGI) food because of its higher starch digestibility, which leads to type II diabetes and obesity as a result of a sedentary life style. Furthermore, the incresaing diabetes cases in rice-consuming populations worldwide need alternative methods to reduce the glycemic impact of rice, with dietary prescriptions based on the eGI value of food being an attractive and practical concept. Rice is often paired with vegetables, pulses, tubers and roots, a staple food group in Africa, Latin America and Asia, which are rich in fibre and health-promoting compounds. RESULTS Rice from four categories (high protein, scented, general and pigmented) was analyzed for eGI and resistant starch (RS) content. Among the genotypes, Improved Lalat had the lowest eGI (53.12) with a relatively higher RS content (2.17%), whereas Hue showed the lowest RS (0.19%) with the highest eGI (76.3) value. The addition of tuber crops to rice caused a significant lowering of eGI where the maximum beneficial effect was shown by elephant foot yam (49.37) followed by yam bean (53.07) and taro (54.43). CONCLUSION The present study suggests that combining rice with suitable tuber crops can significantly reduce its eGI value, potentially reducing the burden of diet-associated lifestyle diseases particularly diabetics. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Upasana Sahoo
- ICAR-National Rice Research Institute, Cuttack, India
| | - Milan Kumar Lal
- ICAR-National Rice Research Institute, Cuttack, India
- Division of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | | | - Kalidas Pati
- Regional Centre, ICAR-Central Tuber Crops Research Institute, Bhubaneswar, India
| |
Collapse
|
2
|
Karmakar B, Sarkar S, Chakraborty R, Saha SP, Thirugnanam A, Roy PK, Roy S. Starch-based biodegradable films amended with nano-starch and tannic acid-coated nano-starch exhibit enhanced mechanical and functional attributes with antimicrobial activity. Carbohydr Polym 2024; 341:122321. [PMID: 38876723 DOI: 10.1016/j.carbpol.2024.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Starch-based biofilms are biodegradable, but their application is limited by lower mechanical strength and absence of antimicrobial properties. In this context, the present study attempted to unleash the potential of nanotechnology for synthesizing nano-starch (NS) and tannic acid-coated nano-starch (T-NS) for augmenting the tensile strength and antimicrobial properties of starch-based biofilms. Moreover, this study reports one of the first such attempts to improve the commercial viability of starch extracted from the corms of Amorphophallus paeoniifolius. In this study, NS and T-NS samples were first synthesized by the physical and chemical modification of the native starch (S) molecules. The NS and T-NS samples showed significantly smaller granule size, lower moisture content, and swelling power. Further, amendments with NS and T-NS samples (25 % and 50 %) to the native starch molecules were performed to obtain biofilm samples. The NSB (NS amended) and T-NSB (T-NS amended) biofilms showed comparatively higher tensile strength than SB films (100 % starch-based). The T-NSB showed greater antimicrobial activity against gram-positive and gram-negative bacteria. All the biofilms showed almost complete biodegradation in soil (in 10 days). Therefore, it can be concluded that additives like NS and T-NS can improve starch-based biofilms' mechanical strength and antimicrobial properties with considerable biodegradability.
Collapse
Affiliation(s)
- Biswanath Karmakar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Sayani Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Govt. College, Himachal Vihar, Matigara, Dist. Darjeeling, West Bengal, India.
| | - Shyama Prasad Saha
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Arunachalam Thirugnanam
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Pranab Kumar Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
3
|
Sasi Rekha V, Sankar K, Rajaram S, Karuppiah P, Dawoud TMS, Syed A, Elgorban AM. Unveiling the impact of additives on structural integrity, thermal and color stability of C-phycocyanin - Agar hydrocolloid. Food Chem 2024; 448:139000. [PMID: 38547706 DOI: 10.1016/j.foodchem.2024.139000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/24/2024]
Abstract
C-Phycocyanin and sugar (C-PC/S) blended agar hydrocolloid was prepared and its rheological, thermo-functional and morphological properties were examined based on the fluorescence excitation-emission matrix profile. Sucrose (40%, w/v) determined as a superior preservative, maintaining the native conformation of C-PC effectively. C-PC/S exhibited enhanced structural integrity with high storage modulus (G') and 86.4% swelling index. FT-IR demonstrated strong intramolecular bonding. TGA revealed that the presence of sucrose prolonged the devolatilization peak up to 325 °C, with a degradation rate of -2.273 mg/min, it the thermal stability. C-PC/S fortified hydrocolloid in ice cream (5.0% w/w), reduced melting rate up to five times. In conclusion, sucrose as a promising enhancer of color stability and structural integrity for C-PC, and this combination effectively improves the functional and rheological properties. Further, the findings exposed the agar hydrocolloid as a potential enhancer of color retention and improved performance for various food and cosmetic products.
Collapse
Affiliation(s)
- V Sasi Rekha
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, K.Vellakulam, 625701, Tamil Nadu, India
| | - Karthikumar Sankar
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, K.Vellakulam, 625701, Tamil Nadu, India.
| | - Shyamkumar Rajaram
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, K.Vellakulam, 625701, Tamil Nadu, India
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box - 2455, Riyadh 11451, Saudi Arabia.
| | - Turkey M S Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box - 2455, Riyadh 11451, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box - 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Centre of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Cheng J, Wang H. Construction and application of nano ZnO/eugenol@yam starch/microcrystalline cellulose active antibacterial film. Int J Biol Macromol 2023; 239:124215. [PMID: 36996962 DOI: 10.1016/j.ijbiomac.2023.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
The goal of this study was to develop new biocomposite films that can better protect and prolong the shelf life of food. Here, a ZnO: eugenol@yam starch/microcrystalline cellulose (ZnO:Eu@SC) antibacterial active film was constructed. Because of the advantages of metal oxides and plant essential oils, codoping with these can effectively improve the physicochemical and functional properties of composite films. The addition of an appropriate amount of nano-ZnO improved the compactness and thermostability, reduced the moisture sensitivity, and enhanced the mechanical and barrier properties of the film. ZnO:Eu@SC exhibited good controlled release of nano-ZnO and Eu in food simulants. Nano-ZnO and Eu release was controlled by two mechanisms: diffusion (primary) and swelling (secondary). After loading Eu, the antimicrobial activity of ZnO:Eu@SC was significantly enhanced, resulting in a synergistic antibacterial effect. Z4:Eu@SC film extended the pork shelf life by 100 % (25 °C). In humus, the ZnO:Eu@SC film was effectively degraded into fragments. Therefore, the ZnO:Eu@SC film has excellent potential in food active packaging.
Collapse
Affiliation(s)
- Junfeng Cheng
- School of Food and Health, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, PR China; School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China.
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China.
| |
Collapse
|
5
|
Xie Q, Liu X, Liu H, Zhang Y, Xiao S, Ding W, Lyu Q, Fu Y, Wang X. Insight into the effect of garlic peptides on the physicochemical and anti-staling properties of wheat starch. Int J Biol Macromol 2023; 229:363-371. [PMID: 36581041 DOI: 10.1016/j.ijbiomac.2022.12.253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
The staling of wheat starch in storage seriously damages the quality of starch-based foods, and how to delay the staling has become a topic focus. To solve the problem, this study analyzed the effect of garlic peptides on the physical and retrogradation behaviors of wheat starch during storage. The rheological, pasting, swelling properties, molecular order, water migration, and microstructure of wheat starch gels were evaluated. Our results showed that garlic peptides effectively reduced the storage and loss modulus of wheat starch. The physical properties indicated that garlic peptides suppressed the swelling and gelatinization of starch, which exhibited higher water holding capacity and lower water migration. In addition, garlic peptides incorporated wheat starch exhibited the lowest gel hardness during storage. X-ray diffraction and Fourier Transform Infrared Spectroscopy analysis indicated that garlic peptides could reduce the crystallinity and inhibit the formation of ordered structures in wheat starch gel. The microstructure observation showed that the gel with garlic peptides maintained the integrity of the network structure. Consequently, garlic peptides are expected to be an effective natural additive to inhibit starch staling and provide new insights for starch-based foods.
Collapse
Affiliation(s)
- Qianran Xie
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaorong Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuting Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shensheng Xiao
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingyun Lyu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
6
|
Srivastava S, Pandey VK, Singh P, Bhagya Raj GVS, Dash KK, Singh R. Effects of microwave, ultrasound, and various treatments on the reduction of antinutritional factors in elephant foot yam: A review. EFOOD 2022. [DOI: 10.1002/efd2.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shivangi Srivastava
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Vinay K. Pandey
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
- Department of Biotechnology Axis Institute of Higher Education Kanpur Uttar Pradesh India
| | - Poornima Singh
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | | | - Kshirod K. Dash
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Malda West Bengal India
| | - Rahul Singh
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| |
Collapse
|
7
|
Bist Y, Kumar Y, Saxena DC. Studies on rheological behavior of native and octenyl succinic anhydride modified buckwheat (
Fagopyrum esculentum
) starch gel and improved flow properties thereof. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yograj Bist
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - Yogesh Kumar
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - Dharmesh Chandra Saxena
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| |
Collapse
|
8
|
Asiamah E, Buckman ES, Peget F, Akonor P, Padi A, Boateng C, Affrifah NS. Effect of xanthan gum and carboxymethyl cellulose on structure, functional and sensorial properties of yam balls. Heliyon 2022; 8:e11200. [PMID: 36303935 PMCID: PMC9593176 DOI: 10.1016/j.heliyon.2022.e11200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Yam and its products can be modified during processing to reduce losses and ensure food security in the developing world. Xanthan gum (XG) and carboxymethyl cellulose (CMC) were added at different concentrations to yam balls and their effect on the structural, functional, and sensory properties of frozen yam balls were investigated in this study. Freeze-thaw stability and oil absorption capacity of yam ball mix were determined. Sensory evaluation and instrumental texture profile analysis (TPA) were done on samples of deep-fried yam balls using TA-XT Texture Analyser. Yam balls mixture containing XG and CMC had significantly (p < 0.05) lower oil uptake and water migration rates of 0.19 g/g and 4.10% as compared to control products 0.25 g/g and 11.05% respectively. Deep-fried yam balls samples containing 1 g of both XG and CMC obtained higher scores for their sensory attributes, while samples containing 2 g of both hydrocolloids were the chewiest. The findings suggest that the addition of hydrocolloids; XG and CMC enhances the freeze-thaw stability and reduces the oil absorption potential of the yam balls mix, and improve the sensory and texture properties of deep-fried yam balls.
Collapse
Affiliation(s)
- Ebenezer Asiamah
- Council for Scientific and Industrial Research-Food Research Institute, P.O. Box M20, Accra, Ghana
| | - Evelyn S. Buckman
- Council for Scientific and Industrial Research-Food Research Institute, P.O. Box M20, Accra, Ghana
| | - Frank Peget
- Council for Scientific and Industrial Research-Food Research Institute, P.O. Box M20, Accra, Ghana
| | - P.T. Akonor
- Council for Scientific and Industrial Research-Food Research Institute, P.O. Box M20, Accra, Ghana
| | - Alice Padi
- Council for Scientific and Industrial Research-Food Research Institute, P.O. Box M20, Accra, Ghana
| | - Constance Boateng
- Council for Scientific and Industrial Research-Food Research Institute, P.O. Box M20, Accra, Ghana
| | | |
Collapse
|
9
|
Suriya M, Haripriya S, Meera K, Reddy CK. Influence of blanching treatment and drying methods on the nutritional composition, functional, and antioxidant properties of elephant foot yam (
Amorphophallus paeoniifolius)
flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- M. Suriya
- Department of Food Science and Technology Pondicherry University 605014 Puducherry India
- Centre for Food Technology Anna University 600025 Chennai India
| | | | - K. Meera
- Department of Food Science and Technology Pondicherry University 605014 Puducherry India
| | - Chagam Koteswara Reddy
- Department of Biochemistry and Bioinformatics Institute of Science GITAM (Deemed to be University), Visakhapatnam 530045 India
| |
Collapse
|
10
|
Kumar Y, Singh S, Saxena DC. Controlling the properties of starch from rice brokens by crosslinking with citric acid and sodium trimetaphosphate. STARCH-STARKE 2022. [DOI: 10.1002/star.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yogesh Kumar
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - D C Saxena
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| |
Collapse
|
11
|
Huang S, Chi C, Li X, Zhang Y, Chen L. Understanding the structure, digestibility, texture and flavor attributes of rice noodles complexation with xanthan and dodecyl gallate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Kheto A, Joseph D, Islam M, Dhua S, Das R, Kumar Y, Vashishth R, Sharanagat VS, Kumar K, Nema PK. Microwave roasting induced structural, morphological, antioxidant and functional attributes of Quinoa (
Chenopodium quinoa Willd). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ankan Kheto
- Department of Food Technology, Vignan Foundation for Science Technology and Research Andhra Pradesh 522213 India
| | - Don Joseph
- Department of Food Technology, Vignan Foundation for Science Technology and Research Andhra Pradesh 522213 India
| | - Makdud Islam
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana 131028 India
| | - Subhamoy Dhua
- Department of Food Engineering & Technology Tezpur University Assam 784028 India
| | - Rahul Das
- Department of Food Engineering and Technology, SLIET Punjab 148106 India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, SLIET Punjab 148106 India
| | - Rahul Vashishth
- Department of Food Technology, Vignan Foundation for Science Technology and Research Andhra Pradesh 522213 India
| | - Vijay Singh Sharanagat
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana 131028 India
| | - Kshitiz Kumar
- Department of Food Processing Technology A D Patel Institute of Technology New V V Nagar, Gujarat, 388121 India
| | - Prabhat K. Nema
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana 131028 India
| |
Collapse
|
13
|
Zhang NN, Yang S, Kuang YY, Shan CS, Lu QQ, Chen ZG. Effects of different modified starches and gums on the physicochemical, functional, and microstructural properties of tapioca pearls. Int J Biol Macromol 2022; 206:222-231. [PMID: 35231533 DOI: 10.1016/j.ijbiomac.2022.02.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/29/2022] [Accepted: 02/24/2022] [Indexed: 11/05/2022]
Abstract
The effects of different modified starch and gums on the physicochemical, functional, and microstructural properties of tapioca pearls were investigated. The addition of starch acetate (SA) and carboxymethylcellulose (CMC) improved the springiness, hardness, cooking properties, and overall acceptability of pearls. Samples added with CMC presented higher peak viscosities, breakdown viscosities, onset gelatinization temperature, and lower enthalpy of gelatinization values compared to control pearls. Furthermore, Rheology and LF-NMR results indicated that all five kinds of modifiers promoted the formation of tighter network structures in products. SEM showed that the addition of SA and hydroxypropyl distarch phosphate (HDP) could fill the voids in the internal gel network of the pearls, thus promoting the formation of a continuous phase network. This study proved SA, HDP, and CMC as modifiers could have tremendous potential to improve the quality of pearls before and after cooking.
Collapse
Affiliation(s)
- Nian-Nian Zhang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sha Yang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yu-Yu Kuang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chang-Song Shan
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qin-Qin Lu
- Jiangsu Marine Fisheries Res Inst, Nantong 226007, Jiangsu, PR China
| | - Zhi-Gang Chen
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
14
|
Singh R, Kaur J, Bansal R, Sharanagat VS, Singh L, Kumar Y, Patel A. Development and characterization of elephant foot yam starch based pH‐sensitive intelligent biodegradable packaging. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rashmi Singh
- Department of Food Engineering NIFTEM Haryana India
| | - Jasjot Kaur
- Department of Food Engineering NIFTEM Haryana India
| | | | | | - Lochan Singh
- Contract Research Organization NIFTEM Haryana India
| | - Yogesh Kumar
- Department of Food Engineering and Technology SLIET Punjab India
| | - Ajay Patel
- Centre for Rural Development and Technology Indian Institute of Technology New Delhi India
| |
Collapse
|
15
|
Shi Z, Blecker C, Richel A, Wei Z, Chen J, Ren G, Guo D, Yao Y, Haubruge E. Three-dimensional (3D) printability assessment of food-ink systems with superfine ground white common bean (Phaseolus vulgaris L.) protein based on different 3D food printers. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Barua S, Tudu K, Rakshit M, Srivastav PP. Characterization and digestogram modeling of modified elephant foot yam (
Amorphophallus paeoniifolius
) starch using ultrasonic pretreated autoclaving. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sreejani Barua
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur Kharagpur
- Max Planck Institute for Polymer Research, Mainz. Ackermannweg 10 Mainz
| | - Karan Tudu
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur Kharagpur
| | - Madhulekha Rakshit
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur Kharagpur
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur Kharagpur
| |
Collapse
|
17
|
Dhua S, Kheto A, Singh Sharanagat V, Singh L, Kumar K, Nema PK. Quality characteristics of sand, pan and microwave roasted pigmented wheat (Triticum aestivum). Food Chem 2021; 365:130372. [PMID: 34218111 DOI: 10.1016/j.foodchem.2021.130372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/08/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Present study investigated the effect of sand, pan and microwave roasting on physico-chemical, functional and rheological properties of yellow (YW), purple (PW), and black wheat (BW). All roasting methods enhanced the browning index (BI), water absorption capacity (WAC) and oil absorption capacity (OAC) roasted wheat flour. Microwave roasting showed significantly higher impact on BI (58.61% for YW, 131% for BW and 83.85% for PW) and WAC (47.93% for YW, 44.63% for BW and 32.09% for PW). However, the decrease in density, emulsifying capacity (EC), foaming capacity (FC), total phenolic content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC), and antioxidant activity was observed on roasted wheat flour. Roasting also affected the pasting properties of wheat flours and peak, trough, breakdown and final viscosity decreased.
Collapse
Affiliation(s)
- Subhamoy Dhua
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India
| | - Ankan Kheto
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India; Department of Food Technology, Vignan Foundation for Science Technology and Research, AP, India
| | - Vijay Singh Sharanagat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India.
| | - Lochan Singh
- Contract Research Organization, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India
| | - Kshitiz Kumar
- Department of Food Processing Technology, A. D. Patel Institute of Technology, New Vidynagar, Gujarat, India
| | - Prabhat K Nema
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India
| |
Collapse
|
18
|
Plasticized Starch/Agar Composite Films: Processing, Morphology, Structure, Mechanical Properties and Surface Hydrophilicity. COATINGS 2021. [DOI: 10.3390/coatings11030311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural biopolymers, which are renewable, widely available, biodegradable, and biocompatible, have attracted huge interest in the development of biocomposite materials. Herein, formulation–property relationships for starch/agar composite films were investigated. First, rapid visco analysis was used to confirm the conditions needed for their gelation and to prepare filmogenic solutions. All the original crystalline and/or lamellar structures of starch and agar were destroyed, and films with cohesive and compact structures were formed, as shown by SEM, XRD, and SAXS. All the plasticized films were predominantly amorphous, and the polymorphs of the composite films were closer to that of the agar-only film. FTIR results suggest that the incorporation of agar restricted starch chain interaction and rearrangement. The addition of agar to starch increased both tensile strength and elongation at break, but the improvements were insignificant after the agar content was over 50 wt.%. Contact angle results indicate that compared with the other samples, the 4:6 (wt./wt.) starch/agar film was less hydrophilic. Thus, this work shows that agar dominates the structure and properties of starch/agar composites, and the best properties can be obtained with a certain starch/agar ratio. Such composite polysaccharide films with tailored mechanical properties and surface hydrophilicity could be useful in biodegradable packaging and biomedical applications (wound dressing and tissue scaffolding).
Collapse
|
19
|
The Influence of Konjac Glucomannan on the Physicochemical and Rheological Properties and Microstructure of Canna Starch. Foods 2021; 10:foods10020422. [PMID: 33671907 PMCID: PMC7918958 DOI: 10.3390/foods10020422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022] Open
Abstract
The addition of hydrocolloid is an effective method to improve the properties of native starch. However, few studies have investigated the effects of konjac glucomannan (KGM) on canna starch (CS). In this study, the effects of various KGM concentration on the pasting, rheological, textural, and morphological properties of CS were investigated. The addition of KGM significantly increased CS’s pasting viscosities. Incorporation of KGM in CS at a relatively high level (1.2% w/w) exerted a significant influence on the pasting properties of CS. The consistency coefficient of CS was notably increased by KGM (from 43.6 to 143.3 Pa·sn) and positively correlated positive with KGM concentration. KGM concentration at a relatively high level (1.2% w/w) increased the elasticities and cohesiveness of CS by 53.3% and 88.0%, respectively, in texture profile analysis. The polarized optical microscope images indicated that KGM played an important part in protecting the crystalline structure of CS during heating. A denser porous microstructure with a filamentous network was observed in gelatinized KGM/CS mixtures as compared with the CS control. This research advances the knowledge of interactions between KGM and CS and opens possibilities to improve rheological properties of CS and to develop its new functionalities with KGM addition.
Collapse
|
20
|
Cai X, Wang Y, Du X, Xing X, Zhu G. Stability of pH-responsive Pickering emulsion stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106093] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Singh R, Sharanagat VS. Physico-functional and structural characterization of ultrasonic-assisted chemically modified elephant foot yam starch. Int J Biol Macromol 2020; 164:1061-1069. [DOI: 10.1016/j.ijbiomac.2020.07.185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
|
22
|
Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. Int J Biol Macromol 2020; 163:766-775. [DOI: 10.1016/j.ijbiomac.2020.07.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
|
23
|
Zhao T, Li X, Ma Z, Hu X, Wang X, Zhang D. Multiscale structural changes and retrogradation effects of addition of sodium alginate to fermented and native wheat starch. Int J Biol Macromol 2020; 163:2286-2294. [PMID: 32961185 DOI: 10.1016/j.ijbiomac.2020.09.094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/13/2023]
Abstract
This work investigated the changes in multi-scale structure and retrogradation properties of native wheat starches (NS) modified by sodium alginate (AG) with and without fermentation. AG adhered on the surface of NS granules and fermentation promoted the adhesions. Compared with the addition of AG alone, dual modification by fermentation and AG together showed a greater effect to increase the weight-average molecular weight and reduce the relative crystallinity and double helix degree of NS. Small angle X-ray diffraction results showed a significant increase in amorphous region with dual modification compared with AG alone. Additionally, dual modification greatly slowed the increase of relative crystallinity and the enthalpy (ΔH) of NS paste during storage. The results of this study suggest that dual modification is a more effective approach to modify structures and properties of wheat starch than single AG treatment, and suggest its potential industrial application in starch-based foods.
Collapse
Affiliation(s)
- Tong Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoping Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xulin Wang
- Hebei Jinshahe Flour and Noodle Group Co., Ltd., Hebei Cereal Food Processing Technology Innovation Center, Hebei 054100, China
| | - Daiyan Zhang
- Hebei Jinshahe Flour and Noodle Group Co., Ltd., Hebei Cereal Food Processing Technology Innovation Center, Hebei 054100, China
| |
Collapse
|
24
|
Wongphan P, Harnkarnsujarit N. Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films. Int J Biol Macromol 2020; 156:80-93. [DOI: 10.1016/j.ijbiomac.2020.04.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
|
25
|
Podshivalov A, Toropova A, Fokina M, Uspenskaya M. Surface Morphology Formation of Edible Holographic Marker on Potato Starch with Gelatin or Agar Thin Coatings. Polymers (Basel) 2020; 12:polym12051123. [PMID: 32423085 PMCID: PMC7284560 DOI: 10.3390/polym12051123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022] Open
Abstract
Edible films and coatings based on biopolymers to protect and extend the shelf life of food and medicine can be functionalized, by applying a holographic marker on the coating surface for marking products or sensing storage conditions. In this work, holographic markers were prepared on the surface of thin biopolymer coatings based on starch, gelatin, agar and also starch/gelatin and starch/agar blends by the nanoimprint method from a film-forming solution. The morphology of the surface of holographic markers using optical microscopy in reflection mode was examined, as well as the reasons for its formation using an analysis of the flow curves of film-forming solutions. It was found that the surface morphology of the marker strongly depends on the composition, consistency index of film-forming solution and miscibility of the components. It was shown that the starch/agar film-forming solution at the ratio of 70/30 wt.% has a low consistency index value of 21.38 Pa·s0.88, compared to 64.56 Pa·s0.67 for pure starch at a drying temperature of 30 °C, and the components are well compatible. Thus, an isotropic morphology of the holographic marker surface was formed and the value of diffraction efficiency of 3% was achieved, compared to 1.5% for the marker made of pure starch. Coatings without holographic markers were analyzed by tensile strength and water contact angle, and their properties are highly dependent on their composition.
Collapse
|
26
|
Nagar M, Sharanagat VS, Kumar Y, Singh L. Development and characterization of elephant foot yam starch-hydrocolloids based edible packaging film: physical, optical, thermal and barrier properties. Journal of Food Science and Technology 2019; 57:1331-1341. [PMID: 32180629 DOI: 10.1007/s13197-019-04167-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/10/2019] [Accepted: 11/08/2019] [Indexed: 11/24/2022]
Abstract
The study aimed at the development of elephant foot yam starch (EFYS) based edible film through blending of Xanthan (XG) and agar-agar (AA). Film thickness and density increased with increase in concentration of hydrocolloids and the respective highest value 0.199 mm and 2.02 g/cm3 were found for the film possessing 2% AA. The film barrier properties varied with hydrocolloids and the lowest value of water vapour transmission rate (1494.54 g/m2) and oxygen transmission rate (0.020 cm3/m2) was observed for the film with 1% XG and 1.5% AA, respectively. Mechanical and thermal properties also improved upon addition of hydrocolloid. Highest tensile strength (20.14 MPa) and glass transition temperature (150.6 °C) was observed for film containing 2% AA. Fourier transform infrared spectroscopy demonstrated the presence of -OH, C-H, and C=O groups. The change in crystallinity was observed through peak in X-ray diffraction analysis, which increased with increase in the hydrocolloids' concentration.
Collapse
Affiliation(s)
- Mohit Nagar
- 1Department of Food Engineering, NIFTEM, Sonipat, Haryana India
| | | | - Yogesh Kumar
- 1Department of Food Engineering, NIFTEM, Sonipat, Haryana India
| | - Lochan Singh
- 2Department of Agriculture and Environmental Science, NIFTEM, Sonipat, Haryana India
| |
Collapse
|