1
|
Shrestha R, Thenissery A, Khupse R, Rajashekara G. Strategies for the Preparation of Chitosan Derivatives for Antimicrobial, Drug Delivery, and Agricultural Applications: A Review. Molecules 2023; 28:7659. [PMID: 38005381 PMCID: PMC10674490 DOI: 10.3390/molecules28227659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Chitosan has received much attention for its role in designing and developing novel derivatives as well as its applications across a broad spectrum of biological and physiological activities, owing to its desirable characteristics such as being biodegradable, being a biopolymer, and its overall eco-friendliness. The main objective of this review is to explore the recent chemical modifications of chitosan that have been achieved through various synthetic methods. These chitosan derivatives are categorized based on their synthetic pathways or the presence of common functional groups, which include alkylated, acylated, Schiff base, quaternary ammonia, guanidine, and heterocyclic rings. We have also described the recent applications of chitosan and its derivatives, along with nanomaterials, their mechanisms, and prospective challenges, especially in areas such as antimicrobial activities, targeted drug delivery for various diseases, and plant agricultural domains. The accumulation of these recent findings has the potential to offer insight not only into innovative approaches for the preparation of chitosan derivatives but also into their diverse applications. These insights may spark novel ideas for drug development or drug carriers, particularly in the antimicrobial, medicinal, and plant agricultural fields.
Collapse
Affiliation(s)
- Rajeev Shrestha
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Anusree Thenissery
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, Findlay, OH 45840, USA;
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| |
Collapse
|
2
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
3
|
Shakola TV, Rubanik VV, Rubanik VV, Kurliuk AV, Kirichuk AA, Tskhovrebov AG, Egorov AR, Kritchenkov AS. Benzothiazole Derivatives of Chitosan and Their Derived Nanoparticles: Synthesis and In Vitro and In Vivo Antibacterial Effects. Polymers (Basel) 2023; 15:3469. [PMID: 37631525 PMCID: PMC10459300 DOI: 10.3390/polym15163469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this work, we focused on synthesizing and assessing novel chitosan-based antibacterial polymers and their nanoparticles by incorporating benzothiazole substituents. The growing resistance to antibiotics has necessitated the search for alternative antimicrobial compounds. This study aimed to synthesize and evaluate chitosan-based polymers and nanoparticles with benzothiazole substituents for their antibacterial properties and toxicity. The benzothiazole derivatives of chitosan and their nanoparticles were synthesized through electrochemical coupling. The in vivo antibacterial efficacy was tested on white rats with induced peritonitis using a microbial suspension containing S. aureus and E. coli. Additionally, in vitro and in vivo toxicity assessments were conducted. The chitosan-based antibacterial systems showed significant in vivo antibacterial activity, surpassing that of unmodified chitosan and commercial antibiotics. Moreover, the toxicity studies revealed low toxicity levels of the synthesized derivatives, which did not differ significantly from native chitosan. The synthesized chitosan-based polymers and nanoparticles demonstrated potent antibacterial activity and low toxicity, highlighting their potential as effective alternatives to traditional antibiotics. Further investigations in pharmacology and preclinical trials are recommended to explore their application in clinical settings.
Collapse
Affiliation(s)
- Tatsiana V. Shakola
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
- Department of General and Clinical Pharmacology, Vitebsk State Medical University, Frunze Av. 27, 210009 Vitebsk, Belarus;
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.)
| | - Aleh V. Kurliuk
- Department of General and Clinical Pharmacology, Vitebsk State Medical University, Frunze Av. 27, 210009 Vitebsk, Belarus;
| | - Anatoly A. Kirichuk
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
| | - Alexander G. Tskhovrebov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
| | - Anton R. Egorov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.)
| |
Collapse
|
4
|
Drozd N, Lunkov A, Shagdarova B, Il’ina A, Varlamov V. New N-Methylimidazole-Functionalized Chitosan Derivatives: Hemocompatibility and Antibacterial Properties. Biomimetics (Basel) 2023; 8:302. [PMID: 37504190 PMCID: PMC10807654 DOI: 10.3390/biomimetics8030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Novel imidazole derivatives of the low molecular weight chitosan N-(2-hydroxypropyl)-1H-1,2,3-triazol-4-yl)methyl)-1-methyl-1H-imidazol-3-ium chitosan chloride (NMIC) were synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC). The degrees of substitution (DSs) for the new derivatives were 18-76%. All chitosan derivatives (2000 µg/mL) were completely soluble in water. The antimicrobial activity of the new compounds against E. coli and S. epidermidis was studied. The effect of chitosan derivatives on blood and its components was studied. NMIC samples (DS 34-76%) at a concentration <10 μg/mL had no effect on blood and plasma coagulation. Chitosan derivatives (DS 18-76%) at concentrations of ≥83 μg/mL in blood and ≥116.3 μg/mL in plasma resulted in a prolongation of the clotting time of blood and plasma, positively related to the DS. At concentrations up to 9.1 μg/mL, NMIC did not independently provoke platelet aggregation. The degree of erythrocyte hemolysis upon contact with NMIC samples (2.5-2500 μg/mL) was below 4%. The inhibition of blood/plasma coagulation indicates the promising use of the studied samples to modify the surface of medical materials in order to achieve thromboresistance.
Collapse
Affiliation(s)
- Natalia Drozd
- National Medical Center for Hematology, 4, Novoi Zykovsky Prospect, Moscow 125167, Russia
| | - Alexey Lunkov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russia; (A.L.); (B.S.); (A.I.); (V.V.)
| | - Balzhima Shagdarova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russia; (A.L.); (B.S.); (A.I.); (V.V.)
| | - Alla Il’ina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russia; (A.L.); (B.S.); (A.I.); (V.V.)
| | - Valery Varlamov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russia; (A.L.); (B.S.); (A.I.); (V.V.)
| |
Collapse
|
5
|
Khubiev OM, Egorov AR, Kirichuk AA, Khrustalev VN, Tskhovrebov AG, Kritchenkov AS. Chitosan-Based Antibacterial Films for Biomedical and Food Applications. Int J Mol Sci 2023; 24:10738. [PMID: 37445916 DOI: 10.3390/ijms241310738] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Antibacterial chitosan films, versatile and eco-friendly materials, have garnered significant attention in both the food industry and medicine due to their unique properties, including biodegradability, biocompatibility, and antimicrobial activity. This review delves into the various types of chitosan films and their distinct applications. The categories of films discussed span from pure chitosan films to those enhanced with additives such as metal nanoparticles, metal oxide nanoparticles, graphene, fullerene and its derivatives, and plant extracts. Each type of film is examined in terms of its synthesis methods and unique properties, establishing a clear understanding of its potential utility. In the food industry, these films have shown promise in extending shelf life and maintaining food quality. In the medical field, they have been utilized for wound dressings, drug delivery systems, and as antibacterial coatings for medical devices. The review further suggests that the incorporation of different additives can significantly enhance the antibacterial properties of chitosan films. While the potential of antibacterial chitosan films is vast, the review underscores the need for future research focused on optimizing synthesis methods, understanding structure-property relationships, and rigorous evaluation of safety, biocompatibility, and long-term stability in real-world applications.
Collapse
Affiliation(s)
- Omar M Khubiev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R Egorov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A Kirichuk
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, 119991 Moscow, Russia
| | - Alexander G Tskhovrebov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Andreii S Kritchenkov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
| |
Collapse
|
6
|
Novel Non-Toxic Highly Antibacterial Chitosan/Fe(III)-Based Nanoparticles That Contain a Deferoxamine—Trojan Horse Ligands: Combined Synthetic and Biological Studies. Processes (Basel) 2023. [DOI: 10.3390/pr11030870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
In this study, we prepared chitosan/Fe(III)/deferoxamine nanoparticles with unimodal size distribution (hydrodynamic diameter ca. 250 nm, zeta potential ca. 32 mV). The elaborated nanoparticles are characterized by outstanding in vitro and in vivo antibacterial activity, which exceeds even that of commercial antibiotics ampicillin and gentamicin. Moreover, the nanoparticles are non-toxic. We found that the introduction of iron ions into the chitosan matrix increases the ability of the resulting nanoparticles to disrupt the integrity of the membranes of microorganisms in comparison with pure chitosan. The introduction of deferoxamine into the obtained nanoparticles sharply expands their effect of destruction the bacterial membrane. The obtained antibacterial nanoparticles are promising for further preclinical studies.
Collapse
|
7
|
Novel Highly Efficient Green and Reusable Cu(II)/Chitosan-Based Catalysts for the Sonogashira, Buchwald, Aldol, and Dipolar Cycloaddition Reactions. Catalysts 2023. [DOI: 10.3390/catal13010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this study, new Cu(II)/chitosan-based systems were designed via (i) the treatment of chitosan with sodium sulfate (1a) or sodium acetate (1b); (ii) the coating of 1a or 2a with a sodium hyaluronate layer (2a and 2b, correspondingly); (iii) the treatment of a cholesterol–chitosan conjugate with sodium sulfate (3a) or sodium acetate (3b); and (iv) the succination of 1a and 1b to afford 4a and 4b or the succination of 2a and 2b to yield 5a and 5b. The catalytic properties of the elaborated systems in various organic transformations were evaluated. The use of copper sulfate as the source of Cu2+ ions results in the formation of nanoparticles, while the use of copper acetate leads to the generation of conventional coarse-grained powder. Cholesterol-containing systems have proven to be highly efficient catalysts for the cross-coupling reactions of different types (e.g., Sonogashira, Buchwald–Hartwig, and Chan–Lam types); succinated systems coated with a layer of hyaluronic acid are promising catalysts for the aldol reaction; systems containing inorganic copper(II) salt nanoparticles are capable of catalyzing the nitrile-oxide-to-nitrile 1,3-dipolar cycloaddition. The elaborated catalytic systems efficiently catalyze the aforementioned reactions in the greenest solvent available, i.e., water, and the processes could be conducted in air. The studied catalytic reactions proceed selectively, and the isolation of the product does not require column chromatography. The product is separated from the catalyst by simple filtration or centrifugation.
Collapse
|
8
|
Chitosan-Based Ciprofloxacin Extended Release Systems: Combined Synthetic and Pharmacological (In Vitro and In Vivo) Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248865. [PMID: 36557998 PMCID: PMC9784460 DOI: 10.3390/molecules27248865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Ciprofloxacin is one of the most effective antibiotics, but it is characterized by a range of side effects. Elaboration of drug-releasing systems which allow to diminish toxicity of ciprofloxacin is a challenging task in medicinal chemistry. The current study is focused on development of new ciprofloxacin releasing systems (CRS). We found that ultrasound efficiently promotes N,N'-dicyclohexyl carbodiimide-mediated coupling between COOH and NH2 functionalities in water. This was used for conjugation of ciprofloxacin to chitosan. The obtained ciprofloxacin/chitosan conjugates are capable of forming their self-assembled nanoparticles (SANPs) in aqueous medium. The SANPs can be additionally loaded by ciprofloxacin to form new CRS. The CRS demonstrated high loading and encapsulation efficiency and they are characterized by extended release profile (20 h). The elaborated CRS were tested in vivo in rats. The in vivo antibacterial effect of the CRS exceeded that of the starting ciprofloxacin. Moreover, the in vivo acute and subacute toxicity of the nanoparticles was almost identical to that of the chitosan, which is considered as the non-toxic biopolymer.
Collapse
|
9
|
Egorov AR, Khubiev O, Rubanik VV, Rubanik VV, Lobanov NN, Savilov SV, Kirichuk AA, Kritchenkov IS, Tskhovrebov AG, Kritchenkov AS. The first selenium containing chitin and chitosan derivatives: Combined synthetic, catalytic and biological studies. Int J Biol Macromol 2022; 209:2175-2187. [PMID: 35513092 DOI: 10.1016/j.ijbiomac.2022.04.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022]
Abstract
Ultrasonic approach to the synthesis of the first selenium-containing derivatives of chitin and chitosan has been developed. The synthetic procedure is simple, provides high yields, does not require harsh conditions, and uses water as the reaction medium. The elaborated chitin and chitosan derivatives and their based nanoparticles are non-toxic and possess high antibacterial and antifungal activity. Their antimicrobial activity exceeds the effect of the classic antibiotics (Ampicillin and Gentamicin) and the antifungal drug Amphotericin B. The obtained selenium-containing cationic chitin and chitosan derivatives exhibit a high transfection activity and are promising gene delivery vectors. Nanoparticles of the synthesized polymers are highly efficient catalysts for the oxidation of 1-phenylethyl alcohol to acetophenone by bromine at room temperature.
Collapse
Affiliation(s)
- Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Omar Khubiev
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Nikolai N Lobanov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Serguei V Savilov
- Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation
| | - Anatoly A Kirichuk
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Ilya S Kritchenkov
- Saint Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russian Federation
| | - Alexander G Tskhovrebov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| |
Collapse
|
10
|
Lunkov A, Shagdarova B, Lyalina T, Dubinnyi MA, Karpova N, Lopatin S, Il'ina A, Varlamov V. Simple method for ultrasound assisted «click» modification of azido-chitosan derivatives by CuAAC. Carbohydr Polym 2022; 282:119109. [DOI: 10.1016/j.carbpol.2022.119109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 01/01/2023]
|
11
|
Egorov AR, Artemjev AA, Kozyrev VA, Sikaona DN, Rubanik VV, Rubanik VV, Kritchenkov IS, Yagafarov NZ, Khubiev OM, Tereshina TA, Kultyshkina EK, Medjbour B, Khrustalev VN, Kritchenkov AS. Synthesis of Selenium-Containing Chitosan Derivatives and Their Antibacterial Activity. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abstract
The interaction of chitosan with 3-(chloromethyl)-[1,2,4]selendiazole[4,5-a]pyridin-4 bromide results in water-soluble, selenium-containing, cationic chitosan derivatives. Derivatives of chitosan with degrees of substitution of 0.15, 0.45, and 0.65 were obtained. These derivatives are characterized by a pronounced in vitro antibacterial activity against Staphylococcus aureus and Escherichia coli, and the antibacterial activity of the derivatives increases with an increase in their degree of substitution. The antibacterial activity of the highly substituted derivative is comparable to that of the conventional antibiotics ampicillin and gentamicin.
Collapse
|
12
|
Synthesis of Betaine Copolymer for Surface Modification of Cotton Fabric by Enhancing Temperature-Sensitive and Anti-Protein Specific Absorption Performance. MATERIALS 2021; 14:ma14226793. [PMID: 34832195 PMCID: PMC8621737 DOI: 10.3390/ma14226793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
Abstract
The growth and reproduction of microorganisms on fabrics could not only affect the wearability of textiles but also cause harm to human health, and it is an important problem that should be solved to reduce the adsorption and growth of microorganisms on the surface of the fabric. A series of ω-vinyl betaine copolymers were synthesized by catalytic chain transfer polymerization (CCTP) and were modified by mercapto-vinyl click chemistry to synthesize silane-modified betaine copolymers, which were used to treat the cotton fabric. The hydrophilic–hydrophobic transition performance and anti-protein specific adhesion performance of cotton fabric with the betaine copolymer were systematically investigated. The copolymer was confirmed to be successfully finished on the cotton fabric via 1H–NMR and FTIR. The cotton fabric, which was treated by the betaine copolymer, presented temperature response performance in the range of 30–55 °C and had excellent anti-protein adsorption performance. The treated fabric had the best temperature-sensitive and anti-protein specific absorption performance among all the specimens when the mass fraction of G06B in DMAPS was 6 wt.%.
Collapse
|
13
|
High antibacterial activity and low toxicity of pyridoxal derivatives of chitosan and their nanoparticles. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Mokariya JA, Kalola AG, Prasad P, Patel MP. Simultaneous ultrasound- and microwave-assisted one-pot 'click' synthesis of 3-formyl-indole clubbed 1,2,3-triazole derivatives and their biological evaluation. Mol Divers 2021; 26:963-979. [PMID: 33834361 DOI: 10.1007/s11030-021-10212-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
An environment friendly, high yielding, promising one-pot protocol for the click reaction of N-propargyl-3-formylindole 2(a-b), chloroacetic acid/ester 3(a-b) and sodium azide, leading to the formation of 3-formyl-indole clubbed 1,4-disubstituted-1,2,3-triazole derivatives 4(a-b), 5(a-b) and 6(a-f) aided by CuI catalyst accomplished under acceleration of simultaneous ultrasound and microwave irradiation in a very short reaction time has been described. Further, acid derivative 4(a-b) is subjected to acid-amine coupling reaction with secondary amine (p-t) in the presence of HATU to afford 6(p-t) and 7(p-t). The perspective of this protocol is to get rid of the hectic preparation and handling of organic azide which are generated in situ. Consequently, this protocol blossoms the click process by making it environment benign, user-friendly, safe and clean technique. All the synthesized compounds have been preliminarily screen for their in vitro antimicrobial activity against a panel of pathogenic strains. The majority of compounds possess noticeably inhibitory action against E. Coli, S. Typhi, P. Aeruginosa, C. tetani, S. aureus and B. subtillis. Among all compounds, 6p and 7q exhibit excellent inhibitory action against E.Coli and P. Aeruginosa strain, respectively, as compared to standard drug. One compound 5b shows remarkable potency against fungal strain. Molecular docking study was carried out to understand binding of compound with protein. In silico ADME prediction was carried out to check physicochemical properties of synthesized compound.
Collapse
Affiliation(s)
- Jaydeep A Mokariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Anirudhdha G Kalola
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Pratibha Prasad
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Manish P Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| |
Collapse
|
15
|
Kritchenkov AS, Egorov AR, Abramovich RA, Kurliuk AV, Shakola TV, Kultyshkina EK, Ballesteros Meza MJ, Pavlova AV, Suchkova EP, Le Nhat Thuy G, Van Tuyen N, Khrustalev VN. Water-soluble triazole chitin derivative and its based nanoparticles: Synthesis, characterization, catalytic and antibacterial properties. Carbohydr Polym 2021; 257:117593. [PMID: 33541634 DOI: 10.1016/j.carbpol.2020.117593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
In this work, we treated chitin with 2-(azidomethyl)oxirane and successfully involved the resultant azido chitin derivatives in the ultrasound-assisted Cu(I)-catalyzed azido-alkyne click (CuAAC) reaction with propargylic ester of N,N,N-trimethyl glycine. Thus, we obtained novel water-soluble triazole chitin derivatives. The triazole chitin derivatives and their nanoparticles are characterized by a high in vitro antibacterial activity, which is the same or even higher than that of commercial antibiotics ampicillin and gentamicin. The obtained derivatives are non-toxic. Moreover, the obtained water-soluble polymers are highly efficient green catalysts for the aldol reaction in green solvent water. The catalysts can be easily extracted from the reaction mixture by its precipitation with green solvent ethanol followed by centrifugation and they can be reused at least 10 times.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101, St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk, 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Rimma A Abramovich
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk, 210009, Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk, 210009, Belarus
| | - Ekaterina K Kultyshkina
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Moises J Ballesteros Meza
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Anastasia V Pavlova
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Elena P Suchkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101, St. Petersburg, Russian Federation
| | - Giang Le Nhat Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| |
Collapse
|
16
|
Ultrasound and click chemistry lead to a new chitin chelator. Its Pd(II) complex is a recyclable catalyst for the Sonogashira reaction in water. Carbohydr Polym 2021; 252:117167. [PMID: 33183618 DOI: 10.1016/j.carbpol.2020.117167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022]
Abstract
For the first time the possibility of chitin use as an accessible and easily-modifiable support for an efficient Pd(II) catalyst has been demonstrated. The modification of chitin avoiding a noticeable chain scission or deacetylation, is achieved by sonochemical alkylation with 1-azido-3-chloropropan-2-ol followed by a convenient azido-alkyne click reaction. The obtained polymer represents an extremely rare case of the chitin derivative soluble both in water and organic solvents. The treatment of that derivative with imino-isonitrile Pd(II) complex solution yielded a chitin-supported Pd(II) complex. The latter could be obtained as a powder or as uniform nanoparticles in different size ranges. The nanoparticles with a hydrodynamic diameter of 30 nm were shown to be the most efficient form of catalyst for the copper- and phosphine-free Sonogashira cross-coupling in water.
Collapse
|
17
|
Kritchenkov AS, Egorov AR, Volkova OV, Artemjev AA, Kurliuk AV, Anh Le T, Hieu Truong H, Le-Nhat-Thuy G, Van Tran Thi T, Van Tuyen N, Khrustalev VN. Novel biopolymer-based nanocomposite food coatings that exhibit active and smart properties due to a single type of nanoparticles. Food Chem 2020; 343:128676. [PMID: 33250292 DOI: 10.1016/j.foodchem.2020.128676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 01/07/2023]
Abstract
We used nanoparticles which possess simultaneously active (antimicrobial, UV-protective and antioxidant) and smart (temperature sensing) properties. The nanoparticles (2Rh = 450 nm, PDI = 0.118 ± 0.014, ζ-potential = 21 mV and Tg = 8 ± 1 °C) are based on polyethylene glycol (PEG)/methyl cellulose (MC) core with anthocyanidin and sodium acetate, and chitosan/gallotannin-based shell. The core of nanoparticles acts as a temperature indicator, changing its color from colorless into deep purple at 8 °C, while the shell provides antimicrobial (due to chitosan), UV-protective and antioxidant (due to gallotannin) effects. We incorporated these nanoparticles into the chitosan matrix. The coatings demonstrated improved mechanical and barrier properties compared with the pure chitosan coating. The elaborated coatings pronouncedly improve the shelf-life of Ricotta cheese. Moreover, they serve as thermo indicators, which warn about cheese storage at an unacceptable temperature. Thus, we developed new coatings in which all properties are enabled by a single type of nanoparticles.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Olga V Volkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Alexey A Artemjev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Tuan Anh Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Hong Hieu Truong
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Giang Le-Nhat-Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Thanh Van Tran Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
18
|
Kritchenkov AS, Kletskov AV, Egorov AR, Kurliuk AV, Rubanik VV, Rubanik VV, Khrustalev VN. New water-soluble derivatives of chitin and their based nanoparticles: Antibacterial and catalytic activity. Int J Biol Macromol 2020; 163:2005-2012. [PMID: 32976904 DOI: 10.1016/j.ijbiomac.2020.09.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
A facile route towards new chitin derivatives with both catalytical and biological activities is proposed in the course of methodology development aimed at the design of polyfunctional materials on the basis of renewable and accessible natural polysaccharides. Ultrasound-promoted and Cu(I)-catalyzed azido-alkyne click cycloaddition of the propargylic ester of nicotinic acid and its N-methylated analogue to the azido chitin derivative allowed us to obtain previously unknown non-toxic water-soluble derivatives of chitin. The obtained polymers and their based nanoparticles demonstrated a high antibacterial activity in vitro, which is comparable or even superior to that of commercial antibiotics ampicillin and gentamicin. New derivatives of chitin were also shown to be highly efficient and reusable (at least for 10 times) green catalysts for the aldol reaction in water. The catalysts can be easily separated from the reaction mixture by their precipitation with ethanol. The results obtained highlight prospects of further studies on chitin's application in the rational design of novel functional materials with valuable properties.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| | - Alexey V Kletskov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Vasilii V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Vasilii V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
19
|
Kritchenkov AS, Egorov AR, Volkova OV, Zabodalova LA, Suchkova EP, Yagafarov NZ, Kurasova MN, Dysin AP, Kurliuk AV, Shakola TV, Khrustalev VN. Active antibacterial food coatings based on blends of succinyl chitosan and triazole betaine chitosan derivatives. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Kritchenkov AS, Kurachenkov AI, Egorov AR, Yagafarov NZ, Fortalnova EA, Lobanov NN, Dysin AP, Khomik AS, Khrustalev VN. Novel zinc(II)/chitosan-based composite: ultrasound-assisted synthesis, catalytic and antibacterial activity. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Kritchenkov AS, Zhaliazniak NV, Egorov AR, Lobanov NN, Volkova OV, Zabodalova LA, Suchkova EP, Kurliuk AV, Shakola TV, Rubanik VV, Rubanik VV, Yagafarov NZ, Khomik AS, Khrustalev VN. Chitosan derivatives and their based nanoparticles: ultrasonic approach to the synthesis, antimicrobial and transfection properties. Carbohydr Polym 2020; 242:116478. [PMID: 32564828 DOI: 10.1016/j.carbpol.2020.116478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
In the present work, we demonstrate that alkylation of chitosan by alkyl halides, aza-Michael reaction with chitosan, and AdN-E reaction of chitosan with aldehydes can be efficiently mediated by ultrasound. An optimization of ultrasonic irradiation parameters allowed us to (i) accelerate the rate of the reactions dramatically, (ii) achieve high selectivity, and (iii) preserve integrity of the polysaccharide backbone avoiding its depolymerization. We evaluated antibacterial/antifungal and transfection activity of 8 different derivatives of chitosan and their based nanoparticles in vitro. Moreover, we studied antibacterial activity of the most efficient polymer and their based nanoparticles in vivo. The tested polymer proved to be superior to reference commercial antibiotics ampicillin and gentamicin.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk, 210009, Republic of Belarus
| | | | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Nikolai N Lobanov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Olga V Volkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Ludmila A Zabodalova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Elena P Suchkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk, 210009, Republic of Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk, 210009, Republic of Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk, 210009, Republic of Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk, 210009, Republic of Belarus
| | - Niyaz Z Yagafarov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovityanov Street, Moscow, 117997, Russian Federation
| | - Anna S Khomik
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| |
Collapse
|
22
|
Kritchenkov AS, Lipkan NA, Kurliuk AV, Shakola TV, Egorov AR, Volkova OV, Meledina TV, Suchkova EP, Zabodalova LA, Dysin AP. Synthesis and Antibacterial Activity of Chitin Tetrazole Derivatives. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02180-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Novel heterocyclic chitosan derivatives and their derived nanoparticles: Catalytic and antibacterial properties. Int J Biol Macromol 2020; 149:682-692. [DOI: 10.1016/j.ijbiomac.2019.12.277] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/26/2022]
|
24
|
Kritchenkov AS, Egorov AR, Artemjev AA, Kritchenkov IS, Volkova OV, Kurliuk AV, Shakola TV, Rubanik VV, Rubanik VV, Tskhovrebov AG, Yagafarov NZ, Khrustalev VN. Ultrasound-assisted catalyst-free thiol-yne click reaction in chitosan chemistry: Antibacterial and transfection activity of novel cationic chitosan derivatives and their based nanoparticles. Int J Biol Macromol 2019; 143:143-152. [PMID: 31805332 DOI: 10.1016/j.ijbiomac.2019.11.241] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 11/17/2022]
Abstract
In this work, we demonstrate that the thiol-yne click reaction could be efficiently mediated by ultrasonic irradiation and implement the ultrasound-assisted thiol-yne click reaction to chitosan chemistry as a polymer-analogous transformation. We optimize power and frequency of ultrasound to preserve selectivity of the click reaction and avoid ultrasonic degradation of the chitosan polymer chain. Thus, we obtain a new water-soluble betaine. Using ionic gelation of the obtained betaine derivatives of chitosan, we prepare nanoparticles with a unimodal size distribution. Furthermore, we present results of antibacterial and transfection activity tests for the chitosan derivatives and their based nanoparticles. The derivative with a medium molecular weight and a high degree of substitution demonstrated the best antibacterial effect. It derived nanoparticles with a size of ca. 100 nm and ζ-potential of ca. +69 mV revealed even higher antibacterial activity, slightly superior to commercial antibiotics ampicillin and gentamicin. On the contrary, the obtained polymers possess a much more pronounced transfection activity as compared with their based nanoparticles and species with a low degree of substitution acts as the most efficient transfecting agent. Moreover, the obtained betaine chitosan derivatives as well as their derived nanoparticles are non-toxic.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Alexey A Artemjev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Ilya S Kritchenkov
- Saint Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russian Federation
| | - Olga V Volkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Alexander G Tskhovrebov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Building 1, Moscow 119991, Russian Federation
| | - Niyaz Z Yagafarov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovityanov Street, Moscow 117997, Russian Federation
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
25
|
Ultrasound-assisted catalyst-free phenol-yne reaction for the synthesis of new water-soluble chitosan derivatives and their nanoparticles with enhanced antibacterial properties. Int J Biol Macromol 2019; 139:103-113. [DOI: 10.1016/j.ijbiomac.2019.07.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
|