1
|
López Marzo AM. Techniques for characterizing biofunctionalized surfaces for bioanalysis purposes. Biosens Bioelectron 2024; 263:116599. [PMID: 39111251 DOI: 10.1016/j.bios.2024.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Surface biofunctionalization is an essential stage in the preparation of any bioassay affecting its analytical performance. However, a complete characterization of the biofunctionalized surface, considering studies of coverage density, distribution and orientation of biomolecules, layer thickness, and target biorecognition efficiency, is not met most of the time. This review is a critical overview of the main techniques and strategies used for characterizing biofunctionalized surfaces and the process in between. Emphasis is given to scanning force microscopies as the most versatile and suitable tools to evaluate the quality of the biofunctionalized surfaces in real-time dynamic experiments, highlighting the helpful of atomic force microscopy, Kelvin probe force microscopy, electrochemical atomic force microscopy and photo-induced force microscopy. Other techniques such as optical and electronic microscopies, quartz crystal microbalance, X-ray photoelectron spectroscopy, contact angle, and electrochemical techniques, are also discussed regarding their advantages and disadvantages in addressing the whole characterization of the biomodified surface. Scarce reviews point out the importance of practicing an entire characterization of the biofunctionalized surfaces. This is the first review that embraces this topic discussing a wide variety of characterization tools applied in any bioanalysis platform developed to detect both clinical and environmental analytes. This survey provides information to the analysts on the applications, strengths, and weaknesses of the techniques discussed here to extract fruitful insights from them. The aim is to prompt and help the analysts to accomplish an entire assessment of the biofunctionalized surface, and profit from the information obtained to enhance the bioanalysis output.
Collapse
Affiliation(s)
- Adaris M López Marzo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Spain; Universitat Autònoma de Barcelona (UAB), Carrer dels Til·lers s/n, Campus de la UAB, 08193, Bellaterra, Spain.
| |
Collapse
|
2
|
Jain S, Sharma JG. Unconventional strategies for liver tissue engineering: plant, paper, silk and nanomaterial-based scaffolds. Regen Med 2024; 19:421-437. [PMID: 39101556 PMCID: PMC11370909 DOI: 10.1080/17460751.2024.2378615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
The paper highlights how significant characteristics of liver can be modeled in tissue-engineered constructs using unconventional scaffolds. Hepatic lobular organization and metabolic zonation can be mimicked with decellularized plant structures with vasculature resembling a native-hepatic lobule vascular arrangement or silk blend scaffolds meticulously designed for guided cellular arrangement as hepatic patches or metabolic activities. The functionality of hepatocytes can be enhanced and maintained for long periods in naturally fibrous structures paving way for bioartificial liver development. The phase I enzymatic activity in hepatic models can be raised exploiting the microfibrillar structure of paper to allow cellular stacking creating hypoxic conditions to induce in vivo-like xenobiotic metabolism. Lastly, the paper introduces amalgamation of carbon-based nanomaterials into existing scaffolds in liver tissue engineering.
Collapse
Affiliation(s)
- Sanyam Jain
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
3
|
Commercially Available Textiles as a Scaffolding Platform for Large-Scale Cell Culture. Int J Biomater 2023; 2023:2227509. [PMID: 36909982 PMCID: PMC9995198 DOI: 10.1155/2023/2227509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The present study outlines the evaluation of textile materials that are currently in the market for cell culture applications. By using normal LaserJet printing techniques, we created the substrates, which were then characterized physicochemically and biologically. In particular, (i) we found that the weave pattern and (ii) the chemical nature of the textiles significantly influenced the behaviour of the cells. Textiles with closely knitted fibers and cell adhesion motifs, exhibited better cell adhesion and proliferation over a period of 7 days. All the substrates supported good viability of cells (>80%). We believe that these aspects make commercially available textiles as a potential candidate for large-scale culture of adherent cells.
Collapse
|
4
|
Lee YJ, Ahn YJ, Lee GJ. Cytotoxicity evaluation of sodium lauryl sulfate in a paper-based 3D cell culture system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1755-1764. [PMID: 35355024 DOI: 10.1039/d2ay00161f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because three-dimensional (3D) cell culture is more similar to in vivo cell microenvironments than two-dimensional (2D) cell culture, various 3D cell culture systems have been developed. Recently, paper has been used as a promising material for 3D cell culture and tissue models due to its flexibility, ease of manufacture, low cost, and widespread accessibility. In this study, we fabricated a paper-based 3D cell culture platform consisting of a hydrophilic region for cell attachment and a hydrophobic region printed with wax. Using this paper platform for 3D culture of L929 cells, we evaluated the cytotoxicity of a model substance, sodium lauryl sulfate (SLS), using water-soluble tetrazolium salt, Live/Dead, and luminescence assays. Then we compared those cytotoxicity results with results from a conventional 3D cell culture kit and 2D cell culture. We found that 3D cultured cells on paper responded more sensitively to SLS than 2D cultured cells, and the cytotoxicity of SLS to cells grown on the paper-based 3D cell culture platform was similar to that of cells grown using a commercially available 3D cell culture kit. Therefore, we expect that our paper-based 3D cell culture platform can be applied as a simple and facile tool for cell viability evaluation.
Collapse
Affiliation(s)
- Young Ju Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea.
| | - Yong Jin Ahn
- Department of Medical Engineering, Kyung Hee University Graduate School, Seoul 02447, Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea.
- Department of Medical Engineering, Kyung Hee University Graduate School, Seoul 02447, Korea
| |
Collapse
|
5
|
Fluorescence Labeling of Cellulose Nanocrystals—A Facile and Green Synthesis Route. Polymers (Basel) 2022; 14:polym14091820. [PMID: 35566986 PMCID: PMC9099464 DOI: 10.3390/polym14091820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Efficient chemical modification of cellulose nanocrystals (CNCs) by grafting commonly involves aprotic solvents, toxic reactants, harsh reaction conditions, or catalysts, which have negative effects on the particle character, reduced dispersibility and requires further purification, if products are intended for biomedical applications. This work, in contrast, presents a robust, facile, and green synthesis protocol for the grafting of an amino-reactive fluorophore like fluorescein isothiocyanate (FITC) on aqueous CNCs, combining and modifying existent approaches in a two-step procedure. Comparably high grafting yields were achieved, which were confirmed by thermogravimetry, FTIR, and photometry. The dispersive properties were confirmed by DLS, AF4-MALS, and TEM studies. The presented route is highly suitable for the introduction of silane-bound organic groups and offers a versatile platform for further modification routes of cellulose-based substrates.
Collapse
|
6
|
De Dios Andres P, Westensee IN, Brodszkij E, Ramos-Docampo MA, Gal N, Städler B. Evaluation of Hybrid Vesicles in an Intestinal Cell Model Based on Structured Paper Chips. Biomacromolecules 2021; 22:3860-3872. [PMID: 34420299 DOI: 10.1021/acs.biomac.1c00686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell culture-based intestinal models are important to evaluate nanoformulations intended for oral drug delivery. We report the use of a floating structured paper chip as a scaffold for Caco-2 cells and HT29-MTX-E12 cells that are two established cell types used in intestinal cell models. The formation of cell monolayers for both mono- and cocultures in the paper chip are confirmed and the level of formed cell-cell junctions is evaluated. Further, cocultures show first mucus formation between 6-10 days with the mucus becoming more pronounced after 19 days. Hybrid vesicles (HVs) made from phospholipids and the amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) in different ratios are used as a representative soft nanoparticle to assess their mucopenetration ability in paper chip-based cell cultures. The HV assembly is characterized, and it is illustrated that these HVs cross the mucus layer and are found intracellularly within 3 h when the cells are grown in the paper chips. Taken together, the moist three-dimensional cellulose environment of structured paper chips offers an interesting cell culture-based intestinal model that can be further integrated with fluidic systems or online read-out opportunities.
Collapse
Affiliation(s)
- Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Miguel A Ramos-Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Noga Gal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Cell Therapy and Bioengineering in Experimental Liver Regenerative Medicine: In Vivo Injury Models and Grafting Strategies. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Purpose of Review
To describe experimental liver injury models used in regenerative medicine, cell therapy strategies to repopulate damaged livers and the efficacy of liver bioengineering.
Recent Findings
Several animal models have been developed to study different liver conditions. Multiple strategies and modified protocols of cell delivery have been also reported. Furthermore, using bioengineered liver scaffolds has shown promising results that could help in generating a highly functional cell delivery system and/or a whole transplantable liver.
Summary
To optimize the most effective strategies for liver cell therapy, further studies are required to compare among the performed strategies in the literature and/or innovate a novel modifying technique to overcome the potential limitations. Coating of cells with polymers, decellularized scaffolds, or microbeads could be the most appropriate solution to improve cellular efficacy. Besides, overcoming the problems of liver bioengineering may offer a radical treatment for end-stage liver diseases.
Collapse
|
8
|
Yun T, Cheng P, Qian F, Cheng Y, Lu J, Lv Y, Wang H. Balancing the decomposable behavior and wet tensile mechanical property of cellulose-based wet wipe substrates by the aqueous adhesive. Int J Biol Macromol 2020; 164:1898-1907. [PMID: 32800954 PMCID: PMC7422816 DOI: 10.1016/j.ijbiomac.2020.08.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
With the current global outbreak of novel coronaviruses, the fabrication of decomposable wet wipe with sufficient wet strength to meet daily use is promising but still challenging, especially when renewable cellulose was employed. In this work, a decomposable cellulose-based wet wipe substrate is demonstrated by introducing a synthetic N-vinyl pyrrolidone-glycidyl methacrylate (NVP-GMA) adhesive on the cellulose surface. Experimental results reveal that the NVP-GMA adhesive not only significantly facilitates the chemical bonding between cellulose fibers in the wet state, but also increase the surface wettability and water retention. The as-fabricated cellulose-based wet wipe substrate displays a superb water retention capacity of 1.9 times, an excellent water absorption capacity (completely wetted with 0° water contact angle), and a perfect wet tensile index of 3.32 N.m.g−1. It is far better than state-of-the-art wet toilet wipe on the market (non-woven). The prepared renewable and degradable cellulose-based substrate with excellent mechanical strength has potential application prospects in diverse commercially available products such as sanitary and medical wet wipes. A decomposable wet wipe substrate was prepared from the bio-based materials. Synthetic adhesive enhanced the wet strength of the cellulose sheet. Enhancement of cellulose-based material was achieved under aqueous conditions. As-prepared cellulose substrate balanced the dispersibility and wet strength.
Collapse
Affiliation(s)
- Tongtong Yun
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Peng Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Yanna Lv
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| |
Collapse
|
9
|
Agarwal T, Borrelli MR, Makvandi P, Ashrafizadeh M, Maiti TK. Paper-Based Cell Culture: Paving the Pathway for Liver Tissue Model Development on a Cellulose Paper Chip. ACS APPLIED BIO MATERIALS 2020; 3:3956-3974. [DOI: 10.1021/acsabm.0c00558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mimi R. Borrelli
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples 80078, Italy
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 51666-16471, Iran
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
10
|
Agarwal T, Biswas P, Pal S, Maiti TK, Chakraborty S, Ghosh SK, Dhar R. Inexpensive and Versatile Paper-Based Platform for 3D Culture of Liver Cells and Related Bioassays. ACS APPLIED BIO MATERIALS 2020; 3:2522-2533. [PMID: 35025303 DOI: 10.1021/acsabm.0c00237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Pratik Biswas
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sampriti Pal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|