1
|
Du Y, Wang R, Fan W, Fu Y, Gao X, Gao Y, Chen L, Wang Z, Huang S. Adsorption of haem by magnetic chitosan microspheres: Optimal conditions, adsorption mechanisms and density functional theory analyses. Int J Biol Macromol 2024; 279:135243. [PMID: 39233154 DOI: 10.1016/j.ijbiomac.2024.135243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Magnetic chitosan microspheres (Al@CTS@Fe3O4) were prepared for haem separation via chemical cross-linking of chitosan, Fe3O4 and AlCl3·6H2O. The properties of the Al@CTS@Fe3O4 microspheres were investigated through techniques including XRD, TEM, FTIR, BET analysis, SEM, TG, VSM, XPS and pHpzc analysis. The haem adsorption of Al@CTS@Fe3O4 was optimized via a Box-Behnken design (BBD) with three operating factors: Fe3O4 dose (0.5-1.3 g), AlCl3·6H2O concentration (0.25-1.25 mol/L) and glutaraldehyde dose (2-6 mL). The optimal haem adsorption effect was achieved with 1.1 g of Fe3O4, 0.75 mol/L AlCl3·6H2O, and 3 mL of glutaraldehyde. The adsorption kinetics and isotherms demonstrated that haem adsorption by the Al@CTS@Fe3O4 microspheres was best described by the pseudo-second-order model. The maximum adsorption capacity is 33.875 mg/g at pH 6. After six adsorption-desorption cycles, the removal of haem still reached 53.83 %. The surface adsorption mechanism of haem on Al@CTS@Fe3O4 can be attributed to electrostatic, hydrogen bonding, and n-π interactions. Thermodynamic calculations indicated that the adsorption process is spontaneous, with the microspheres preferentially accepting electrons and haem preferentially providing electrons. Consequently, the Al@CTS@Fe3O4 microspheres exhibit considerable potential as adsorbents for haem separation.
Collapse
Affiliation(s)
- Yuanyuan Du
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong 250200, China.
| | - Ruixue Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong 250200, China
| | - Weixi Fan
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong 250200, China
| | - Ying Fu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong 250200, China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong 250200, China
| | - Yan Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong 250200, China
| | - Liwei Chen
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong 250200, China
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Shuangping Huang
- School of the Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
2
|
Padhan B, Ryoo W, Patel M, Dash JK, Patel R. Cutting-Edge Applications of Cellulose-Based Membranes in Drug and Organic Contaminant Removal: Recent Advances and Innovations. Polymers (Basel) 2024; 16:2938. [PMID: 39458766 PMCID: PMC11511415 DOI: 10.3390/polym16202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The increasing environmental challenges caused by pharmaceutical waste, especially antibiotics and contaminants, necessitate sustainable solutions. Cellulose-based membranes are considered advanced tools and show great potential as effective materials for the removal of drugs and organic contaminants. This review introduces an environmentally friendly composite membrane for the elimination of antibiotics and dye contaminants from water and food, without the use of toxic additives. The potential of cellulose-based membranes in reducing the impact on water quality and promoting environmental sustainability is emphasized. Additionally, the benefits of using biobased cellulose membranes in membrane biological reactors for the removal of antibiotics from pharmaceutical waste and milk are explored, presenting an innovative approach to achieving a circular economy. This review provides recent and comprehensive insights into membrane bioreactor technology, making it a valuable resource for researchers seeking efficient methods to break down antibiotics in industrial wastewater, particularly in the pharmaceutical and dairy industries.
Collapse
Affiliation(s)
- Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, India;
| | - Wanki Ryoo
- Bio-Convergence, Integrated Science and Engineering Division, Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea;
| | - Jatis Kumar Dash
- Department of Physics, SRM University-AP, Amaravati 522502, India
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
3
|
Boccia AC, Neagu M, Pulvirenti A. Bio-Based Aerogels for the Removal of Heavy Metal Ions and Oils from Water: Novel Solutions for Environmental Remediation. Gels 2023; 10:32. [PMID: 38247754 PMCID: PMC10815902 DOI: 10.3390/gels10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Contamination of the aqueous environment caused by the presence of heavy metal ions and oils is a growing concern that must be addressed to reduce their detrimental impact on living organisms and safeguard the environment. Recent efficient and environmentally friendly remediation methods for the treatment of water are based on third-generation bioaerogels as emerging applications for the removal of heavy metal ions and oils from aqueous systems. The peculiarities of these materials are various, considering their high specific surface area and low density, together with a highly porous three-dimensional structure and tunable surface chemistry. This review illustrates the recent progress in aerogels developed from cellulose and chitosan as emerging materials in water treatment. The potential of aerogel-based adsorbents for wastewater treatment is reported in terms of adsorption efficacy and reusability. Despite various gaps affecting the manufacturing and production costs of aerogels that actually limit their successful implementation in the market, the research progress suggests that bio-based aerogels are ready to be used in water-treatment applications in the near future.
Collapse
Affiliation(s)
- Antonella Caterina Boccia
- National Research Council, (CNR), Istituto di Scienze e Tecnologie Chimiche-SCITEC “G. Natta”, Via A. Corti, 12, 20133 Milano, Italy;
| | - Monica Neagu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Alfio Pulvirenti
- National Research Council, (CNR), Istituto di Scienze e Tecnologie Chimiche-SCITEC “G. Natta”, Via A. Corti, 12, 20133 Milano, Italy;
| |
Collapse
|
4
|
Recoverable cellulose composite adsorbents for anionic/cationic dyes removal. Int J Biol Macromol 2023; 238:124022. [PMID: 36921822 DOI: 10.1016/j.ijbiomac.2023.124022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
GO/HEC/PGDE/Fe3O4 materials were successfully fabricated using environmentally-friendly hydroxyethyl cellulose (HEC), poly(ethylene glycol) diglycidyl ether (PGDE), graphene oxide (GO) and magnetic Fe3O4. Systematic investigations were completed to explore the influences of GO content in GO/HEC/PGDE/Fe3O4 and adsorption conditions on the adsorptions of cationic dyes (methylene blue (MB), crystal violet (CV)) and anionic dye acid blue 25 (AB-25). The increase of GO content can remarkably improve the adsorption capacity of GO/HEC/PGDE/Fe3O4 for the dyes. The three kinetic, four isothermic and three thermodynamic models were investigated to reveal the adsorption behaviors of the dyes. The formation of HEC/PGDE/Fe3O4 and adsorption mechanisms of the dyes by GO/HEC/PGDE/Fe3O4 were suggested. The GO/HEC/PGDE/Fe3O4 endowed with easy-fabrication, eco-friendly feature, efficient adsorption capacity of anionic/cationic dyes, convenient separation and reusability has potential applications in wastewater purification industry.
Collapse
|
5
|
Balasubramani K, Sivarajasekar N, Sarojini G, Naushad M. Removal of Antidiabetic Pharmaceutical (Metformin) Using Graphene Oxide Microcrystalline Cellulose (GOMCC): Insights to Process Optimization, Equilibrium, Kinetics, And Machine Learning. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- K. Balasubramani
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Valley campus, Coimbatore-641032, Tamilnadu India
| | - N. Sivarajasekar
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore-641049, Tamilnadu India
| | - G. Sarojini
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Valley campus, Coimbatore-641032, Tamilnadu India
| | - Mu. Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Qiu M, Xu W, Chen S, Jia Z, Li Y, He J, Wang L, Lei J, Liu C, Liu J. A novel adsorptive and photocatalytic system for dye degradation using ZIF-8 derived carbon (ZIF-C)-modified graphene oxide nanosheets. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Recent developments in GO/Cellulose based composites: Properties, synthesis, and its applications. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
8
|
Liu A, Liu J, He S, Zhang J, Shao W. Bimetallic MOFs loaded cellulose as an environment friendly bioadsorbent for highly efficient tetracycline removal. Int J Biol Macromol 2023; 225:40-50. [PMID: 36473529 DOI: 10.1016/j.ijbiomac.2022.11.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Due to the increasingly serious antibiotic-related pollution, it is crucial to develop novel green bioadsorbents to effectively remove antibiotics from aqueous solutions. In this study, Fe doped zeolitic imidazolate frameworks-8 loaded cellulose (Fe/ZIF-8@cellulose) aerogels were prepared. The synthesized Fe/ZIF-8@cellulose aerogels were characterized experimentally including morphology observation and chemical compositions determination. The effects of bioadsorbent dosage, solution pH, adsorption time, initial TC concentration and adsorption temperature on the TC adsorption behaviors were systematically studied. Due to the introduction of Fe in the ZIF-8, the maximum adsorption capacity of Fe/ZIF-8@cellulose for TC could reach as high as 1359.2 mg/g, which is higher than the reported ZIF-8 loaded polysaccharide based adsorbents. The adsorption kinetics and isotherm of TC adsorption were also determined. With the cellulose as the matrix to load Fe/ZIF-8, the obtained Fe/ZIF-8@cellulose aerogels exhibited good reusability. Most importantly, the TC adsorption mechanism was proposed. The results of our finding suggest that the Fe doping into MOFs is an effective strategy to improve the antibiotics adsorption performance and the application of cellulose as the matrix is a valuable method to increase the cyclic utilization. This study highlights the potentials of applying the Fe/ZIF-8@cellulose aerogels in the antibiotics removal for practical wastewater.
Collapse
Affiliation(s)
- An Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Jia Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Shu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Jie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Wei Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing.
| |
Collapse
|
9
|
Tanpichai S, Boonmahitthisud A, Soykeabkaew N, Ongthip L. Review of the recent developments in all-cellulose nanocomposites: Properties and applications. Carbohydr Polym 2022; 286:119192. [DOI: 10.1016/j.carbpol.2022.119192] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
|
10
|
Abouzeid RE, Owda ME, Dacrory S. Effective adsorption of cationic methylene blue dye on cellulose nanofiber/graphene oxide/silica nanocomposite: Kinetics and equilibrium. J Appl Polym Sci 2022. [DOI: 10.1002/app.52377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Medhat E. Owda
- Chemistry Department, Faculty of Science Al‐Azhar University Nasr City Cairo Egypt
| | - Sawsan Dacrory
- Cellulose and Paper Department National Research Centre Giza Egypt
| |
Collapse
|
11
|
Xabela S, Moutloali RM. 2‐(
N‐3‐Sulfopropyl‐N
,N‐dimethyl ammonium)ethyl methacrylate modified graphene oxide embedded into cellulose acetate ultrafiltration membranes for improved performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.52336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sinethemba Xabela
- Faculty of Science Chemical Sciences Department University of Johannesburg Johannesburg South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre–UJ Water Research Node University of Johannesburg Johannesburg South Africa
| | - Richard Motlhaletsi Moutloali
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre–UJ Water Research Node University of Johannesburg Johannesburg South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| |
Collapse
|
12
|
Yang G, Kong H, Chen Y, Liu B, Zhu D, Guo L, Wei G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr Polym 2022; 279:118947. [PMID: 34980360 DOI: 10.1016/j.carbpol.2021.118947] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023]
Abstract
Due to the good biocompatibility and flexibility of cellulose and the excellent optical, electronic, as well as mechanical properties of carbon nanomaterials (CNMs), cellulose/CNM hybrid materials have been widely synthesized and used in energy storage, sensors, adsorption, biomedicine, and many other fields. In this review, we present recent advances (2016-current) in the design, structural design, functional tailoring and various applications of cellulose/CNM hybrid materials. For this aim, first the interactions between cellulose and CNMs for promoting the formation of cellulose/CNM materials are analyzed, and then the hybridization between cellulose with various CNMs for tailoring the structures and functions of hybrid materials is introduced. Further, abundant applications of cellulose/CNM hybrid materials in various fields are presented and discussed. This comprehensive review will be helpful for readers to understand the functional design and facile synthesis of cellulose-based nanocomposites, and to promote the high-performance utilization and sustainability of biomass materials in the future.
Collapse
Affiliation(s)
- Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
13
|
Tishbi P, Moasayebi M, Salehi Z, Fatemi S, Faegh E. Synthesizing magnetic graphene oxide nanomaterial (
GO‐Fe
3
O
4
) and kinetic modeling of methylene blue adsorption from water. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pedram Tishbi
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Mehdi Moasayebi
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Zeinab Salehi
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Shohreh Fatemi
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Ehsan Faegh
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| |
Collapse
|
14
|
Liu YP, Lv YT, Guan JF, Khoso FM, Jiang XY, Chen J, Li WJ, Yu JG. Rational design of three-dimensional graphene/graphene oxide-based architectures for the efficient adsorption of contaminants from aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Salama A, Abouzeid R, Leong WS, Jeevanandam J, Samyn P, Dufresne A, Bechelany M, Barhoum A. Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3008. [PMID: 34835769 PMCID: PMC8620168 DOI: 10.3390/nano11113008] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Nanocelluloses are promising bio-nano-materials for use as water treatment materials in environmental protection and remediation. Over the past decades, they have been integrated via novel nanoengineering approaches for water treatment processes. This review aims at giving an overview of nanocellulose requirements concerning emerging nanotechnologies of waster treatments and purification, i.e., adsorption, absorption, flocculation, photocatalytic degradation, disinfection, antifouling, ultrafiltration, nanofiltration, and reverse osmosis. Firstly, the nanocellulose synthesis methods (mechanical, physical, chemical, and biological), unique properties (sizes, geometries, and surface chemistry) were presented and their use for capturing and removal of wastewater pollutants was explained. Secondly, different chemical modification approaches surface functionalization (with functional groups, polymers, and nanoparticles) for enhancing the surface chemistry of the nanocellulose for enabling the effective removal of specific pollutants (suspended particles, microorganisms, hazardous metals ions, organic dyes, drugs, pesticides fertilizers, and oils) were highlighted. Thirdly, new fabrication approaches (solution casting, thermal treatment, electrospinning, 3D printing) that integrated nanocelluloses (spherical nanoparticles, nanowhiskers, nanofibers) to produce water treatment materials (individual composite nanoparticles, hydrogels, aerogels, sponges, membranes, and nanopapers) were covered. Finally, the major challenges and future perspectives concerning the applications of nanocellulose based materials in water treatment and purification were highlighted.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Wei Sun Leong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore;
| | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Pieter Samyn
- Institute for Materials Research (MO-IMOMEC), Applied and Analytical Chemistry, University of Hasselt, B-3590 Diepenbeek, Belgium;
| | - Alain Dufresne
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| |
Collapse
|
16
|
Qiu C, Zhang X, Zhang Y, Tang Q, Yuan Z, De Hoop CF, Cao J, Hao S, Liang T, Li F, Huang X. Bamboo-Based Biofoam Adsorbents for the Adsorption of Cationic Pollutants in Wastewater: Methylene Blue and Cu(II). ACS OMEGA 2021; 6:23447-23459. [PMID: 34549143 PMCID: PMC8444294 DOI: 10.1021/acsomega.1c03438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Human health is being threatened by cationic pollutants in wastewater, for example, methylene blue (MB) and Cu(II). Our research team successfully fabricated biofoam adsorbents from recycled bamboo waste that removed cationic pollutants via introducing bamboo fiber sources, i.e., bamboo fiber, bamboo α-cellulose fiber, and bamboo nanocellulose fiber, into a polyurethane (PU) foam matrix. The biofoam adsorbent with 1 g of nanocellulose (PUN1) presented high removal efficiencies for MB (95.52%) and Cu(II) (100%) in low cationic pollutant concentration aqueous solutions. The biofoam adsorbent with 1 g of bamboo fiber (PUB1) also displayed excellent removal efficiency for MB (98.61%) at pH 11. Meanwhile, 100% removal of Cu(II) was obtained by PUB1 at pH 7 (initial content = 15 mg/L). Furthermore, the PUN1 sample had excellent reusability, evidenced by 61.25% removal of MB after five adsorption-desorption cycles, suggesting that PUN1 is a promising renewable adsorbent for cationic pollutants. In addition, PUB1 is a low-cost adsorbent with good adsorption efficiencies for MB in weak alkaline solutions and Cu(II) in neutral aqueous solutions.
Collapse
Affiliation(s)
- Chongpeng Qiu
- College
of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuelun Zhang
- College
of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - You Zhang
- College
of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qi Tang
- College
of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zihui Yuan
- College
of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Cornelis F. De Hoop
- School
of Renewable Natural Resources, Louisiana
State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Jiwen Cao
- College
of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shilin Hao
- College
of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ting Liang
- College
of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feng Li
- Landscape
Architecture School, Chengdu Agricultural
College, Chengdu, Sichuan 611130, China
| | - Xingyan Huang
- College
of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
17
|
Muthusaravanan S, Balasubramani K, Suresh R, Ganesh RS, Sivarajasekar N, Arul H, Rambabu K, Bharath G, Sathishkumar VE, Murthy AP, Banat F. Adsorptive removal of noxious atrazine using graphene oxide nanosheets: Insights to process optimization, equilibrium, kinetics, and density functional theory calculations. ENVIRONMENTAL RESEARCH 2021; 200:111428. [PMID: 34107284 DOI: 10.1016/j.envres.2021.111428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Atrazine is a toxic herbicide whose alarming rate of contamination in the drinking water and wastewater poses a severe threat to the environment and human health. Here in this study, the graphene oxide (GO) nanosheets were prepared using Hummers' method with minor modification and studied as a potential adsorbent for atrazine removal from simulated wastewater. The spectroscopy and microscopic analysis confirmed the successful formation of GO with a multilayer structure resembling the crumpled sheets with random stacking. The Response Surface Methodology (RSM) employing Box Behnken design (BBD) was successfully developed to predict the optimal conditions for maximal atrazine removal as adsorbent dosage 121.45 mg/L; initial feed concentration 27.03 mg/L; temperature 27.69 °C, pH 5.37, and time 180 min. The atrazine adsorption onto GO was found to be higher in acidic pH and lower temperature. Density functional theory (DFT) calculation of adsorbent-adsorbate complex in the implicit solvent medium suggests adsorption affinity energy of -24.4 kcal/mol for atrazine. A careful observation of the molecules configuration and binding energy showed that the π-π interactions and hydrogen bonds played a significant role in the adsorption phenomena. Langmuir isotherm suited well to the adsorption process with a maximum adsorption capacity of 138.19 mg/g, at 318 K. The fitness of kinetic models for atrazine adsorption onto GO nanosheets were in following order Ho < Sobkowsk-Czerwi < Avrami model based on their correlation coefficient (R2) values. Reusability analysis showed that GO nanosheets could be effectively recycled using 0.01 N NaOH up to six cycles of atrazine removal. Thus, this study provided a theoretical and experimental basis for the potential application of GO nanosheets as a novel adsorbent for the removal of hazardous atrazine.
Collapse
Affiliation(s)
- S Muthusaravanan
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, India; Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, India
| | - K Balasubramani
- Department of Petrochemical Engineering, JCT College of Engineering and Technology, Coimbatore, 641105, India
| | - Rahul Suresh
- Department of Physics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - R Sankar Ganesh
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - N Sivarajasekar
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, India.
| | - H Arul
- Department of Physics, Kumaraguru College of Technology, Coimbatore, 641049, India
| | - K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - G Bharath
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - V E Sathishkumar
- Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Erode, 638060, Tamilnadu, India
| | - A P Murthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Ahmed A, Adak B, Faruk MO, Mukhopadhyay S. Nanocellulose Coupled 2D Graphene Nanostructures: Emerging Paradigm for Sustainable Functional Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Abbas Ahmed
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
- National Institute of Textile Engineering and Research, University of Dhaka, Dhaka 1000, Bangladesh
| | - Bapan Adak
- Product Development Department, Kusumgar Corporates Pvt. Ltd., Vapi, Valsad, Gujarat 396195, India
| | - Md. Omar Faruk
- National Institute of Textile Engineering and Research, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samrat Mukhopadhyay
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
19
|
Kumar P, Bharti, Rai PK. Synthesis of Environmentally Friendly Rayon‐Graphene Oxide Nano Composite for Decontamination of Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202101338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pradeep Kumar
- Environment Safety Group Centre for Fire Explosive and Environment Safety (CFEES) Brig. S. K. Mazumdar Road, Timarpur Delhi 110054 India
| | - Bharti
- Environment Safety Group Centre for Fire Explosive and Environment Safety (CFEES) Brig. S. K. Mazumdar Road, Timarpur Delhi 110054 India
| | - Pramod Kumar Rai
- Environment Safety Group Centre for Fire Explosive and Environment Safety (CFEES) Brig. S. K. Mazumdar Road, Timarpur Delhi 110054 India
| |
Collapse
|
20
|
Ji Y, Xu F, Wei W, Gao H, Zhang K, Zhang G, Xu Y, Zhang P. Efficient and fast adsorption of methylene blue dye onto a nanosheet MFI zeolite. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121917] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Tang Z, Miao Y, Zhao J, Xiao H, Zhang M, Liu K, Zhang X, Huang L, Chen L, Wu H. Mussel-inspired biocompatible polydopamine/carboxymethyl cellulose/polyacrylic acid adhesive hydrogels with UV-shielding capacity. CELLULOSE (LONDON, ENGLAND) 2021; 28:1527-1540. [PMID: 33424143 PMCID: PMC7778394 DOI: 10.1007/s10570-020-03596-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are attractive due to their various applications in the fields of biomedical materials, cosmetics, and biosensors. To enhance UV protection and prevent skin penetration behaviors, inspired by the mussel adhesive proteins, the functional polydopamine (PDA) is employed herein to fabricate polydopamine/carboxymethyl cellulose/polyacrylic acid (PDA/CMC/PAA) adhesive hydrogels. To disperse PDA nanoparticles well in the PAA matrix, dopamine was self-polymerized in CMC solution to form PDA/CMC complex. Acrylic acid was polymerized in PDA/CMC complex solution and cross-linked to construct UV-resistant PDA/CMC/PAA hydrogel. The morphology, rheological behavior, mechanical properties and adhesion strength of PDA/CMC/PAA hydrogels were studied by scanning electron microscopy, rotational rheometer, universal test machine. Owing to the hydrogen bonding interaction between the PDA/CMC complex and PAA, the PDA/CMC/PAA hydrogels showed high resilience and compressive strength to withstand large deformation. The hydrogels exhibited strong adhesion to various substrate surfaces, such as stainless steel, aluminum, glass and porcine skin. The biocompatibility and UV-shielding properties were investigated through culture of cells and UV irradiation test. The adhesiveness of PDA promoted cell adhesion and provided the PDA/CMC/PAA hydrogels good biocompatibility with 96% of relative cell viability. The hydrogels possessed excellent UV-shielding ability to prevent collagen fibers from being destroyed during UV irradiation, which has promising potential in the practical applications for UV filtration membrane and skin care products.
Collapse
Affiliation(s)
- Zuwu Tang
- College of Material Engineering, Fujian Agriculture and Forestry University, No. 63, Xiyuangong Road, Minhou District, Fuzhou, 350108 Fujian People’s Republic of China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, 350108 Fujian People’s Republic of China
| | - Yanan Miao
- College of Material Engineering, Fujian Agriculture and Forestry University, No. 63, Xiyuangong Road, Minhou District, Fuzhou, 350108 Fujian People’s Republic of China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, 350108 Fujian People’s Republic of China
| | - Jing Zhao
- College of Material Engineering, Fujian Agriculture and Forestry University, No. 63, Xiyuangong Road, Minhou District, Fuzhou, 350108 Fujian People’s Republic of China
| | - He Xiao
- College of Material Engineering, Fujian Agriculture and Forestry University, No. 63, Xiyuangong Road, Minhou District, Fuzhou, 350108 Fujian People’s Republic of China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, 350108 Fujian People’s Republic of China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, No. 63, Xiyuangong Road, Minhou District, Fuzhou, 350108 Fujian People’s Republic of China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, 350108 Fujian People’s Republic of China
| | - Kai Liu
- College of Material Engineering, Fujian Agriculture and Forestry University, No. 63, Xiyuangong Road, Minhou District, Fuzhou, 350108 Fujian People’s Republic of China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, 350108 Fujian People’s Republic of China
| | - Xingye Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, No. 63, Xiyuangong Road, Minhou District, Fuzhou, 350108 Fujian People’s Republic of China
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, No. 63, Xiyuangong Road, Minhou District, Fuzhou, 350108 Fujian People’s Republic of China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, 350108 Fujian People’s Republic of China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, No. 63, Xiyuangong Road, Minhou District, Fuzhou, 350108 Fujian People’s Republic of China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, 350108 Fujian People’s Republic of China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, No. 63, Xiyuangong Road, Minhou District, Fuzhou, 350108 Fujian People’s Republic of China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, 350108 Fujian People’s Republic of China
| |
Collapse
|
22
|
Efficient removal of antidepressant Flupentixol using graphene oxide/cellulose nanogel composite: Particle swarm algorithm based artificial neural network modelling and optimization. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Liu Q, Yu H, Zeng F, Li X, Sun J, Hu X, Pan Q, Li C, Lin H, min Su Z. Polyaniline as interface layers promoting the in-situ growth of zeolite imidazole skeleton on regenerated cellulose aerogel for efficient removal of tetracycline. J Colloid Interface Sci 2020; 579:119-127. [DOI: 10.1016/j.jcis.2020.06.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
|
24
|
Tang Z, Zhao M, Wang Y, Zhang W, Zhang M, Xiao H, Huang L, Chen L, Ouyang X, Zeng H, Wu H. Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination. Int J Biol Macromol 2020; 144:127-134. [DOI: 10.1016/j.ijbiomac.2019.12.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
|
25
|
Ahamad T, Naushad M, Al-Shahrani T, Al-Hokbany N, Alshehri SM. Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. Int J Biol Macromol 2020; 147:258-267. [PMID: 31917217 DOI: 10.1016/j.ijbiomac.2020.01.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/27/2022]
Abstract
In the present study, the magnetic nanocomposite is fabricated using chitosan, thiobarbituric acid, malondialdehyde and Fe3O4 nanoparticles (CTM@Fe3O4). The fabricated nanocomposite (CTM@Fe3O4) is characterized using FTIR, TGA, BET, XRD, Raman, XPS, FESEM, and HRTEM techniques. The results of BET analysis confirmed that the nanocomposite has a mesoporous structure with high surface area of 376 m2 g-1 and high pore volume 0.3828 cm3 g-1. The adsorption of tetracycline (TC) onto CTM@Fe3O4 adsorbent is carried out using batch technique by changing several factors such as pH, concentration, contact time, and temperature. Langmuir and pseudo-second-order nonlinear models were found to be the best-fit models to predict isotherms and kinetics of adsorption, respectively. The highest adsorption capacity of 215.31mg/g was achieved at the optimum conditions of 0.05g adsorbent dosage, 60mg/L TC concentration. Overall, results demonstrated that CTM@Fe3O4 nanocomposite was an excellent adsorbent material with superparamagnetic properties, which allowed the separation as well as recovery of the adsorbent from aqueous solution using external magnet for effective industrial applications.
Collapse
Affiliation(s)
- Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Thamraa Al-Shahrani
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Noorah Al-Hokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|