1
|
Jin JH, Amenyogbe E, Yang Y, Wang ZL, Lu Y, Xie RT, Droepenu EK, Huang JS. Effects of ammonia nitrogen stress on the physiological, biochemical, and metabolic levels of the gill tissue of juvenile four-finger threadfin (Eleutheronema tetradactylum). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107049. [PMID: 39159590 DOI: 10.1016/j.aquatox.2024.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
In this study, the impact of ammonia nitrogen stress on juvenile four-finger threadfin in pond culture was examined. The 96-hour median lethal concentration (LC50-96h) and safe concentration of ammonia nitrogen were assessed in juveniles with a body weight of 7.4 ± 0.6 g using ecotoxicological methods. The study design included a stress group exposed to LC50-96h levels of ammonia nitrogen and a control group without ammonia nitrogen exposure. To examine the physiological, biochemical, and metabolic effects of ammonia nitrogen on gill tissue, gill tissue samples were collected after 12, 24, 48, and 96 h of stress, with a resumption of treatment after 48 h. Compared to the control group, ammonia nitrogen adversely affected juvenile four-finger threadfin, with LC50-96h and safe concentration values of 20.70 mg/L and 2.07 mg/L, respectively. Exposure to ammonia nitrogen resulted in substantial gill damage, including fusion of lamellae, epithelial cell loss, and proliferation of chlorine-secreting cells. This tissue damage persisted even after a 48-h recovery period. Ammonia nitrogen stress triggered an increase in antioxidant enzyme activity (superoxide dismutase, catalase, and glutathione peroxidase) and malondialdehyde levels in gills, indicating oxidative stress from 12 h onwards. Although enzyme activity decreased over time, oxidative stress persisted even after recovery, suggesting an ongoing need for antioxidant defense. Metabolomics analysis showed significant alterations in 423 metabolites under ammonia nitrogen stress. Key metabolites such as L-arginine, taurine, 20-hydroxyarachidonic acid, 11,12-dihydroxy-5Z, 8Z, and 14Z eicosotrienic acid followed an increasing trend; uridine, adenosine, L-glutathione, and thymidine 5'-triphosphate followed a decreasing trend. These changes reflect metabolic adaptations to stress. In enriched metabolic pathways, the main differential pathways are membrane transport, lipid metabolism, and amino acid metabolism. After 48 h, significant differences were observed in 396 metabolites compared to the control group. Notably, L-arginine, choline, and L-histidine increased, while linoleic acid, adenosine, and glutathione decreased. Amino acid and lipid metabolism pathways were key affected pathways. Under ammonia nitrogen stress, juvenile four-finger threadfin increased the synthesis of unsaturated and saturated fatty acids to cope with low temperatures and bolster immune function by consuming spermidine. This adaptation helps to clear peroxides generated during fatty acid synthesis, thereby protecting cells from oxidative damage. This study provides insights for pond aquaculture and breeding of ammonia nitrogen-tolerant fish strains.
Collapse
Affiliation(s)
- Jing-Hui Jin
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Eastern Region, Ghana
| | - Ye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Zhong-Liang Wang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China; Guangdong Marine Fish Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Yi Lu
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Rui-Tao Xie
- Guangdong Evergreen Feed Industry Co. Ltd, Zhanjiang, 524003, China
| | - Eric Kwabena Droepenu
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Eastern Region, Ghana
| | - Jian-Sheng Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China; Guangdong Marine Fish Science and Technology Innovation Center, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Luo L, Yang LS, Huang JH, Jiang SG, Zhou FL, Li YD, Jiang S, Yang QB. Effects of Different Salinity Stress on the Transcriptomic Responses of Freshwater Crayfish ( Procambarus clarkii, Girard, 1852). BIOLOGY 2024; 13:530. [PMID: 39056722 PMCID: PMC11273973 DOI: 10.3390/biology13070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Salinization of freshwater ecosystems is a pressing global issue. Changes in salinity can exert severe pressure on aquatic animals and jeopardize their survival. Procambarus clarkii is a valuable freshwater aquaculture species that exhibits some degree of salinity tolerance, making it an excellent research model for freshwater aquaculture species facing salinity stress. In the present study, crayfish were exposed to acute low salt (6 ppt) and high salt (18 ppt) conditions. The organisms were continuously monitored at 6, 24, and 72 h using RNA-Seq to investigate the mechanisms of salt stress resistance. Transcriptome analysis revealed that the crayfish responded to salinity stress with numerous differentially expressed genes, and most of different expression genes was observed in high salinity group for 24h. GO and KEGG enrichment analyses indicated that metabolic pathways were the primary response pathways in crayfish under salinity stress. This suggests that crayfish may use metabolic pathways to compensate for energy loss caused by osmotic stress. Furthermore, gene expression analysis revealed the differential expression of immune and antioxidant-related pathway genes under salinity stress, implying that salinity stress induces immune disorders in crayfish. More genes related to cell proliferation, differentiation, and apoptosis, such as the Foxo, Wnt, Hippo, and Notch signaling pathways, responded to high-salinity stress. This suggests that regulating the cellular replication cycle and accelerating apoptosis may be necessary for crayfish to cope with high-salinity stress. Additionally, we identified 36 solute carrier family (SLC) genes related to ion transport, depicting possible ion exchange mechanisms in crayfish under salinity stress. These findings aimed to establish a foundation for understanding crustacean responses to salinity stress and their osmoregulatory mechanisms.
Collapse
Affiliation(s)
- Lei Luo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li-Shi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China;
| | - Jian-Hua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Fa-Lin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Yun-Dong Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Qi-Bin Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China;
| |
Collapse
|
3
|
Hu W, Cao Y, Liu Q, Yuan C, Hu Z. Effect of salinity on the physiological response and transcriptome of spotted seabass (Lateolabrax maculatus). MARINE POLLUTION BULLETIN 2024; 203:116432. [PMID: 38728954 DOI: 10.1016/j.marpolbul.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Salinity fluctuations significantly impact the reproduction, growth, development, as well as physiological and metabolic activities of fish. To explore the osmoregulation mechanism of aquatic organisms acclimating to salinity stress, the physiological and transcriptomic characteristics of spotted seabass (Lateolabrax maculatus) in response to varying salinity gradients were investigated. In this study, different salinity stress exerted inhibitory effects on lipase activity, while the impact on amylase activity was not statistically significant. Notably, a moderate increase in salinity (24 psu) demonstrated the potential to enhance the efficient utilization of proteins by spotted seabass. Both Na+/K+-ATPase and malondialdehyde showed a fluctuating trend of increasing and then decreasing, peaking at 72 h. Transcriptomic analysis revealed that most differentially expressed genes were involved in energy metabolism, signal transduction, the immune response, and osmoregulation. These results will provide insights into the molecular mechanisms of salinity adaptation and contribute to sustainable development of the global aquaculture industry.
Collapse
Affiliation(s)
- Wenjing Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yi Cao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Chen Yuan
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhongjun Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China..
| |
Collapse
|
4
|
Barrett NJ, Harper EM, Last KS, Reinardy HC, Peck LS. Behavioural and physiological impacts of low salinity on the sea urchin Echinus esculentus. J Exp Biol 2024; 227:jeb246707. [PMID: 38099430 PMCID: PMC10906488 DOI: 10.1242/jeb.246707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024]
Abstract
Reduced seawater salinity as a result of freshwater input can exert a major influence on the ecophysiology of benthic marine invertebrates, such as echinoderms. While numerous experimental studies have explored the physiological and behavioural effects of short-term, acute exposure to low salinity in echinoids, surprisingly few have investigated the consequences of chronic exposure, or compared the two. In this study, the European sea urchin, Echinus esculentus, was exposed to low salinity over the short term (11‰, 16‰, 21‰, 26‰ and 31‰ for 24 h) and longer term (21, 26 and 31‰ for 25 days). Over the short term, oxygen consumption, activity coefficient and coelomic fluid osmolality were directly correlated with reduced salinity, with 100% survival at ≥21‰ and 0% at ≤16‰. Over the longer term at 21‰ (25 days), oxygen consumption was significantly higher, feeding was significantly reduced and activity coefficient values were significantly lower than at control salinity (31‰). At 26‰, all metrics were comparable to the control by the end of the experiment, suggesting acclimation. Furthermore, beneficial functional resistance (righting ability and metabolic capacity) to acute low salinity was observed at 26‰. Osmolality values were slightly hyperosmotic to the external seawater at all acclimation salinities, while coelomocyte composition and concentration were unaffected by chronic low salinity. Overall, E. esculentus demonstrate phenotypic plasticity that enables acclimation to reduced salinity around 26‰; however, 21‰ represents a lower acclimation threshold, potentially limiting its distribution in coastal areas prone to high freshwater input.
Collapse
Affiliation(s)
- Nicholas J. Barrett
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Elizabeth M. Harper
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Kim S. Last
- The Scottish Association for Marine Science, Oban PA37 1QA, UK
| | - Helena C. Reinardy
- The Scottish Association for Marine Science, Oban PA37 1QA, UK
- Department of Arctic Technology, The University Centre in Svalbard, N-9171 Longyearbyen, Norway
| | - Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| |
Collapse
|
5
|
He Z, Shou C, Han Z. Transcriptome Analysis of Marbled Rockfish Sebastiscus marmoratus under Salinity Stress. Animals (Basel) 2023; 13:ani13030400. [PMID: 36766289 PMCID: PMC9913653 DOI: 10.3390/ani13030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
The marbled rockfish, Sebastiscus marmoratus, belongs to the euryhaline fish and is an oviparous scleractinian fish. There are few studies on the adaptation mechanism, functional genes, and related pathways of S. marmoratus and salinity. The results showed that a total of 72.1 GB of clean reads were obtained and all clean reads annotated a total of 25,278 Unigenes, of which 2,160 were novel genes. Compared to 20‱, 479 and 520 differential genes were obtained for 35‱ and 10‱, respectively. Gene ontology (GO) enrichment analysis revealed significant enrichment in protein binding, ion binding, ATP binding, and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that differentially expressed genes significantly expressed under salinity stress were mainly involved in the pathways of the cytochrome P450 metabolism of xenobiotics, tryptophan metabolism, cellular senescence, and calcium signaling pathways. Among them, pik3r6b, cPLA2γ-like, and WSB1 were differentially expressed in all three groups, and they were associated with apoptosis, inflammation, DNA damage, immune regulation, and other physiological processes. Six differentially expressed genes were randomly selected for qRT-PCR validation, and the results showed that the transcriptomic data were of high confidence.
Collapse
|
6
|
Li YD, Si MR, Jiang SG, Yang QB, Jiang S, Yang LS, Huang JH, Chen X, Zhou FL, Li E. Transcriptome and molecular regulatory mechanisms analysis of gills in the black tiger shrimp Penaeus monodon under chronic low-salinity stress. Front Physiol 2023; 14:1118341. [PMID: 36935747 PMCID: PMC10014708 DOI: 10.3389/fphys.2023.1118341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Background: Salinity is one of the main influencing factors in the culture environment and is extremely important for the survival, growth, development and reproduction of aquatic animals. Methods: In this study, a comparative transcriptome analysis (maintained for 45 days in three different salinities, 30 psu (HC group), 18 psu (MC group) and 3 psu (LC group)) was performed by high-throughput sequencing of economically cultured Penaeus monodon. P. monodon gill tissues from each treatment were collected for RNA-seq analysis to identify potential genes and pathways in response to low salinity stress. Results: A total of 64,475 unigenes were annotated in this study. There were 1,140 upregulated genes and 1,531 downregulated genes observed in the LC vs. HC group and 1,000 upregulated genes and 1,062 downregulated genes observed in the MC vs. HC group. In the LC vs. HC group, 583 DEGs significantly mapped to 37 signaling pathways, such as the NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, and PI3K-Akt signaling pathway; in the MC vs. HC group, 444 DEGs significantly mapped to 28 signaling pathways, such as the MAPK signaling pathway, Hippo signaling pathway and calcium signaling pathway. These pathways were significantly associated mainly with signal transduction, immunity and metabolism. Conclusions: These results suggest that low salinity stress may affect regulatory mechanisms such as metabolism, immunity, and signal transduction in addition to osmolarity in P. monodon. The greater the difference in salinity, the more significant the difference in genes. This study provides some guidance for understanding the low-salt domestication culture of P. monodon.
Collapse
Affiliation(s)
- Yun-Dong Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Meng-Ru Si
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qi-Bin Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Li-Shi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jian-Hua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xu Chen
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Fa-Lin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- *Correspondence: Fa-Lin Zhou, ; ErChao Li,
| | - ErChao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- *Correspondence: Fa-Lin Zhou, ; ErChao Li,
| |
Collapse
|
7
|
Yang C, Shan B, Liu Y, Wang L, Liu M, Yao T, Sun D. Transcriptomic analysis of male three-spot swimming crab (Portunus sanguinolentus) infected with the parasitic barnacle Diplothylacus sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 128:260-268. [PMID: 35934240 DOI: 10.1016/j.fsi.2022.07.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Diplothylacus sinensis is reported as an intriguing parasitic barnacle that can negatively affect the growth, molting, reproduction in several commercially important portunid crabs. To better understand the molecular mechanisms of host-parasite interactions, we characterized the gene expression profiles from the healthy and D. sinensis infected Portunus sanguinolentus by high-through sequence method. Totally, the transcriptomic analysis generated 52, 266, 600 and 51, 629, 604 high quality reads from the infected and control groups, respectively. The clean reads were assembled to 90,740 and 69,314 unigenes, with the average length of 760 bp and 709 bp, respectively. The expression analysis showed that 18,959 genes were significantly changed by the parasitism of D. sinensis, including 4769 activated genes and 14,190 suppressed genes. The differentially expressed genes were categorized into 258 KEGG pathways and 647 GO terms. The GO analysis mapped 13 DEGs related to immune system process and 32 DEGs related to immune response, respectively, suggesting a potential alteration of transcriptional expression patterns in complement cascades of P. sanguinolentus. Additionally, 4 representative molting-related genes were down-regulated in parasitized group, indicating D. sinensis infection appeared to suppress the producing of ecdysteroid hormones. In conclusion, the present study improves our understanding on parasite-host interaction mechanisms, which focuses the function of Ecdysone receptor, Toll-like receptor and cytokine receptor of crustacean crabs infestation with rhizocephalan parasites.
Collapse
Affiliation(s)
- Changping Yang
- Tropical Aquaculture Research and Development Center of South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Sanya, 572018, China; Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Binbin Shan
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yan Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Manting Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Tuo Yao
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Dianrong Sun
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
8
|
Fan Y, Feng J, Xie N, Ling F, Wang Z, Ma K, Hua X, Li J. RNA-seq Provides Novel Insights into Response to Acute Salinity Stress in Oriental River Prawn Macrobrachium nipponense. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:820-829. [PMID: 35915287 DOI: 10.1007/s10126-022-10151-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The oriental river prawn Macrobrachium nipponense is an important aquaculture species in China, Vietnam, and Japan. This species could survive in the salinity ranging from 7 to 20 ppt and accelerate growth in the salinity of 7 ppt. To identify the genes and pathways in response to acute high salinity stress, M. nipponense was exposed to the acute high salinity of 25 ppt. Total RNA from hepatopancreas, gills, and muscle tissues was isolated and then sequenced using high-throughput sequencing method. Differentially expressed genes (DGEs) were identified, and a total of 632, 836, and 1246 DEGs with a cutoff of significant twofold change were differentially expressed in the hepatopancreas, gills, and muscle tissues, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were conducted. These DEGs were involved in the GO terms of cellular process, metabolic process, membrane, organelle, binding, and catalytic activity. The DEGs of hepatopancreas and gill tissues were mainly enriched in PPAR signaling pathway, longevity regulating pathway, protein digestion and absorption, and the DEGs of muscle tissue in arginine biosynthesis, adrenergic signaling in cardiomyocytes, cardiac muscle contraction, and cGMP-PKG signaling pathway. Real-time PCR conducted with fifteen selected DEGs indicated high reliability of digital analysis using RNA-Seq. The results indicated that the M. nipponense may regulate essential mechanisms such as metabolism, oxidative stress, and ion exchange to adapt the alternation of environment, when exposed to acute high salinity stress. This work reveals the numbers of genes modified by salinity stress and some important pathways, which could provide a comprehensive insight into the molecular responses to high salinity stress in M. nipponense and further boost the understanding of the potential molecular mechanisms of adaptation to salinity stress for euryhaline crustaceans.
Collapse
Affiliation(s)
- Yaoran Fan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Nan Xie
- Hangzhou Fishery Research Institute, Hangzhou, China
| | - Feiyue Ling
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zefei Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Keyi Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xueming Hua
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
9
|
Fuad MTI, Shi W, Liao X, Li Y, Sharifuzzaman S, Zhang X, Liu X, Xu Q. Transcriptomic response of intertidal brittle star Ophiothrix exigua to seasonal variation. Mar Genomics 2022; 64:100957. [DOI: 10.1016/j.margen.2022.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
|
10
|
Zhao L, Qu F, Song N, Han Z, Gao T, Zhang Z. Population genomics provides insights into the population structure and temperature-driven adaptation of Collichthys lucidus. BMC Genomics 2021; 22:729. [PMID: 34625022 PMCID: PMC8501621 DOI: 10.1186/s12864-021-08045-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Understanding the genetic structure and local adaptive evolutionary mechanisms of marine organisms is crucial for the management of biological resources. As the ecologically and commercially important small-sized shallow-sea fish, Collichthys lucidus plays a vital role in the structure and functioning of marine ecosystem processes. C. lucidus has been shown to have an obvious population structure. Therefore, it is an ideal candidate for investigating population differentiation and local adaptation under heterogeneous environmental pressure. RESULTS A total of 184,708 high-quality single nucleotide polymorphisms (SNPs) were identified and applied to elucidate the fine-scale genetic structure and local thermal adaptation of 8 C. lucidus populations. Population structure analysis based on all SNPs indicated that the northern group and southern group of C. lucidus have a strong differentiation. Moreover, 314 SNPs were found to be significantly associated with temperature variation, and annotations of genes containing temperature-related SNPs suggested that genes were involved in material (protein, lipid, and carbohydrate) metabolism and immune responses. CONCLUSION The high genetic differentiation of 8 C. lucidus populations may have been caused by long-term geographic isolation during the glacial period. Moreover, we suspected that variation in these genes associated with material (protein, lipid, and carbohydrate) metabolism and immune responses was critical for adaptation to spatially heterogeneous temperatures in natural C. lucidus populations. In conclusion, this study could help us determine how C. lucidus populations will respond to future ocean temperature rising.
Collapse
Affiliation(s)
- Linlin Zhao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, 266100, P. R. China
| | - Fangyuan Qu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, 266100, P. R. China
| | - Na Song
- Fisheries College, Ocean University of China, Qingdao, Shandong, 266003, P. R. China
| | - Zhiqiang Han
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, P. R. China
| | - Tianxiang Gao
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, P. R. China
| | - Zhaohui Zhang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, 266100, P. R. China.
| |
Collapse
|