1
|
Hossen MA, Shimul IM, Sameen DE, Rasheed Z, Dai J, Li S, Qin W, Tang W, Chen M, Liu Y. Essential oil-loaded biopolymeric particles on food industry and packaging: A review. Int J Biol Macromol 2024; 265:130765. [PMID: 38462119 DOI: 10.1016/j.ijbiomac.2024.130765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Essential oils (EOs) are liquid extracts derived from various parts of herbal or medicinal plants. They are widely accepted in food packaging due to their bioactive components, which exhibit remarkable antioxidant and antimicrobial properties against various pathogenic and food spoilage microorganisms. However, the functional efficacy of EOs is hindered by the high volatility of their bioactive compounds, leading to rapid release. Combining biopolymers with EOs forms a complex network within the polymeric matrix, reducing the volatility of EOs, controlling their release, and enhancing thermal and mechanical stability, favoring their application in food packaging or processing industries. This study presents a comprehensive overview of techniques used to encapsulate EOs, the natural polymers employed to load EOs, and the functional properties of EOs-loaded biopolymeric particles, along with their potential antioxidant and antimicrobial benefits. Additionally, a thorough discussion is provided on the widespread application of EOs-loaded biopolymers in the food industries. However, research on their utilization in confectionery processing, such as biscuits, chocolates, and others, remains limited. Further studies can be conducted to explore and expand the applications of EOs-loaded biopolymeric particles in food processing industries.
Collapse
Affiliation(s)
- Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Islam Md Shimul
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zainab Rasheed
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wuxia Tang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
2
|
González-Moreno BJ, Galindo-Rodríguez SA, Rivas-Galindo VM, Pérez-López LA, Granados-Guzmán G, Álvarez-Román R. Enhancement of Strawberry Shelf Life via a Multisystem Coating Based on Lippia graveolens Essential Oil Loaded in Polymeric Nanocapsules. Polymers (Basel) 2024; 16:335. [PMID: 38337224 DOI: 10.3390/polym16030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Strawberries (Fragaria xannanasa) are susceptible to mechanical, physical, and physiological damage, which increases their incidence of rot during storage. Therefore, a method of protection is necessary in order to minimize quality losses. One way to achieve this is by applying polymer coatings. In this study, multisystem coatings were created based on polymer nanocapsules loaded with Lippia graveolens essential oil, and it was found to have excellent optical, mechanical, and water vapor barrier properties compared to the control (coating formed with alginate and with nanoparticles without the essential oil). As for the strawberries coated with the multisystem formed from the polymer nanocapsules loaded with the essential oil of Lippia graveolens, these did not present microbial growth and only had a loss of firmness of 17.02% after 10 days of storage compared to their initial value. This study demonstrated that the multisystem coating formed from the polymer nanocapsules loaded with the essential oil of Lippia graveolens could be a viable alternative to preserve horticultural products for longer storage periods.
Collapse
Affiliation(s)
- Barbara Johana González-Moreno
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Sergio Arturo Galindo-Rodríguez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Verónica Mayela Rivas-Galindo
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Luis Alejandro Pérez-López
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Graciela Granados-Guzmán
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Rocío Álvarez-Román
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| |
Collapse
|
3
|
Sajimon A, Edakkadan AS, Subhash AJ, Ramya M. Incorporating oregano (Origanum vulgare L.) Essential oil onto whey protein concentrate based edible film towards sustainable active packaging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2408-2422. [PMID: 37424588 PMCID: PMC10326189 DOI: 10.1007/s13197-023-05763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 07/11/2023]
Abstract
The study's objectives were to develop a packaging film incorporating oregano essential oil, and evaluate the antioxidant, antibacterial, mechanical, and physicochemical activities of the film toward grapes packaging. The films were developed by casting method, after adding nano-emulsion of essential oil into WPC-glycerol film forming solution. The effects of the Oregano Essential Oil (OEO) at different concentrations of 1, 2, 3, and 4% (w/w) in the WPC edible films were studied. The light transmittance, colour aspects, water aspects, mechanical, antioxidant, antimicrobial activities, FTIR, SEM microstructure, and biodegradability of the film were studied. Acidity, weight, TSS, pH and 9-point hedonic sensory analysis of grapes packed in WPC-OEO film were evaluated. Results showed that 3% OEO incorporated WPC film displayed positive inhibition towards pathogenic bacteria; Staphylococcus aureus and Escherichia coli (25.36 ± 0.52-28.0 ± 0.5 mm), the antioxidant activity of 86.89 ± 0.087% and 51.24 ± 0.031% for DPPH, FRAP respectively and degradation after 10 days. The film displayed reduced light transmittance, lower water solubility (44.04 ± 2.361%) and prominent surface characteristics in SEM microstructure and FTIR spectra. The grapes packed in WPC-3% OEO film were firmer, had less surface colour change and showed negligible change in weight, pH, acidity, and Brix value throughout the storage period. Thus, the developed film displayed excellent antibacterial and antioxidant properties that potentially extended the quality of fresh grapes during refrigerated storage. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05763-7.
Collapse
Affiliation(s)
- Athul Sajimon
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
| | - Athulya Sunil Edakkadan
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
| | - Athira Jayasree Subhash
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
- Present Address: Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - M. Ramya
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
| |
Collapse
|
4
|
Garavand F, Nooshkam M, Khodaei D, Yousefi S, Cacciotti I, Ghasemlou M. Recent advances in qualitative and quantitative characterization of nanocellulose-reinforced nanocomposites: A review. Adv Colloid Interface Sci 2023; 318:102961. [PMID: 37515865 DOI: 10.1016/j.cis.2023.102961] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/31/2023]
Abstract
Nanocellulose has received immense consideration owing to its valuable inherent traits and impressive physicochemical properties such as biocompatibility, thermal stability, non-toxicity, and tunable surface chemistry. These features have inspired researchers to deploy nanocellulose as nanoscale reinforcement materials for bio-based polymers. A simple yet efficient characterization method is often required to gain insights into the effectiveness of various types of nanocellulose. Despite a decade of continuous research and booming growth in scientific publications, nanocellulose research lacks a measuring tool that can characterize its features with acceptable speed and reliability. Implementing reliable characterization techniques is critical to monitor the specifications of nanocellulose alone or in the final product. Many techniques have been developed aiming to measure the nano-reinforcement mechanisms of nanocellulose in polymer composites. This review gives a full account of the scientific underpinnings of techniques that can characterize the shape and arrangement of nanocellulose. This review aims to deliver consolidated details on the properties and characteristics of nanocellulose in biopolymer composite materials to improve various structural, mechanical, barrier and thermal properties. We also present a comprehensive description of the safety features of nanocellulose before and after being loaded within biopolymeric matrices.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Diako Khodaei
- School of Food Science and Environmental Health, Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, Ireland.
| | - Shima Yousefi
- Department of Agriculture and Food Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolò Cusano', Rome, Italy.
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
5
|
Yochabedh CA, Nandhini L, Preetha R, Rejish Kumar VJ. Nanomaterials in aquatic products and aquatic systems, and its safety aspects. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Sadadekar AS, Shruthy R, Preetha R, Kumar N, Pande KR, Nagamaniammai G. Enhanced antimicrobial and antioxidant properties of Nano chitosan and pectin based biodegradable active packaging films incorporated with fennel ( Foeniculum vulgare) essential oil and potato ( Solanum tuberosum) peel extracts. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:938-946. [PMID: 36908350 PMCID: PMC9998760 DOI: 10.1007/s13197-021-05333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/19/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Active packaging materials are generally prepared by incorporating antimicrobial agents. The main objective of the present research is the development and characterization of active packaging with Nano chitosan and pectin. Active packaging film was prepared by incorporating essential oil of Fennel (EOF) along with potato peel extract (PPE) to improve the antioxidant and antimicrobial property of the film. Incorporation of EOF into Nano chitosan and pectin-based films increased antimicrobial activity, whereas; PPE increased the antioxidant property of the films. In the present study, thickness, optical property, mechanical property, antioxidant and antimicrobial property, total soluble matter, morphological study, FTIR analysis, and microbial degradation study of the prepared active packaging material was done. The addition of the PPE and EOF together improved the surface, optical, mechanical, antimicrobial and antioxidant properties of the packaging film. Enhanced antimicrobial and antioxidant property of the Nano chitosan-PPE-PVA-EOF and pectin-PPE-PVA-EOF-based packaging films can extend the shelf life of the packed food; hence it is suggested for the active packaging for perishable food commodity. In short, the prepared active packaging film with biodegradable property is suggested as an effective packaging material to replace synthetic plastic packages for food and hence reduce plastic pollution. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05333-9.
Collapse
Affiliation(s)
- Ameya S. Sadadekar
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, 603203 Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu India
| | - Ramesh Shruthy
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, 603203 Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu India
| | - R. Preetha
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, 603203 Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu India
| | - Navneeth Kumar
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, 603203 Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu India
| | - Kaushal Rajesh Pande
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, 603203 Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu India
| | - G. Nagamaniammai
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, 603203 Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu India
| |
Collapse
|
7
|
Anagha K, Sreejit V, Preetha R. Probiotic with gluten reduction property and its encapsulation in synbiotic aloe vera gel-alginate capsules with banana powder as prebiotic. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1125-1135. [PMID: 36908335 PMCID: PMC9998746 DOI: 10.1007/s13197-022-05639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/12/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
This study aims to hydrolyze the immunogenic gluten peptides by probiotic bacteria, Lactococcus lactis G01. It was isolated from curd and isolation was done based on ability to hydrolyze gluten. It was also tested for probiotic properties such as survival in gastric juice, bile salts, acid resistance, antibiotic sensitivity, antioxidant potential, sodium chloride tolerance, and antimicrobial activity. Lactococcus lactis G01 exhibited potential probiotic properties also, hence it was selected for microencapsulation. Probiotic was encapsulated in sodium alginate beads using banana powder as prebiotic and aloe vera as the adsorbent. The bead morphology was studied using scanning electron microscopy and transmission electron microscopy. The chemical composition of the bead was confirmed by FTIR. It was observed that 99% of the encapsulated probiotic cells were released into the simulated intestinal fluid in 90 min. Storage study was conducted for encapsulated probiotic and after four weeks of storage, the probiotic count in microcapsules was 7.82 log10 CFU/g. The formulated synbiotic capsules are suggested to incorporate in porridge for celiac patients since the probiotic has gluten reduction property. Graphical abstract
Collapse
Affiliation(s)
- K. Anagha
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu 603203 India
| | - V. Sreejit
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu 603203 India
| | - R. Preetha
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
8
|
Properties of polyvinyl alcohol films reinforced by citric acid modified cellulose nanocrystals and silica aerogels. Carbohydr Polym 2022; 298:120116. [DOI: 10.1016/j.carbpol.2022.120116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
|
9
|
Bio-nanocomposites as food packaging materials; the main production techniques and analytical parameters. Adv Colloid Interface Sci 2022; 310:102806. [DOI: 10.1016/j.cis.2022.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
10
|
Ashwanandhini G, Reshma R, Preetha R. Synbiotic microencapsulation of Enterococcus faecium Rp1: a potential probiotic isolated from ragi porridge with antiproliferative property against colon carcinoma cell line. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3888-3894. [PMID: 36193351 PMCID: PMC9525466 DOI: 10.1007/s13197-022-05415-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/19/2021] [Accepted: 02/19/2022] [Indexed: 06/16/2023]
Abstract
Ragi porridge, commonly consumed in South India is made from finger millet and noiyee (broken rice), and it is one of the excellent sources for probiotic bacteria. In vitro assays provided the proof that the probiotic strains isolated from ragi porridge can survive during the intestinal passage. Also, it showed antioxidant activity and antagonistic activity against foodborne pathogens including Shigella flexineri, Staphylococcus aureus, Salmonella typhii and Escherichia coli. Enterococcus faecium Rp1 isolated from ragi porridge was susceptible to vancomycin and showed to cease the progression of HCT116 (colon carcinoma) cell line. Further, Enterococcus faecium was microencapsulated using sodium alginate and aloe vera gel as binding agents and onion extract as a source of prebiotic to perform symbiotic encapsulation. In short, this study concludes that the fermented Ragi porridge is a rich source of probiotics with anti-microbial, antioxidant and antiproliferative property hence can be suggested for improving gut microbiota. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05415-2.
Collapse
Affiliation(s)
- Govindarajan Ashwanandhini
- Department of Food Process Engineering, School of Bioengineering, The college of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, 603203 Kattankulathur, Chennai, Tamil Nadu India
| | - Raveendran Reshma
- Department of Food Process Engineering, School of Bioengineering, The college of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, 603203 Kattankulathur, Chennai, Tamil Nadu India
| | - R. Preetha
- Department of Food Process Engineering, School of Bioengineering, The college of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, 603203 Kattankulathur, Chennai, Tamil Nadu India
| |
Collapse
|
11
|
Kalse S, Swami S. Recent application of jackfruit waste in food and material engineering: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Behravesh A, Shahrousvand M, Goudarzi A. Poly(acrylic acid)/gum arabic/ZnO semi-IPN hydrogels: synthesis, characterization and their optimizations by response surface methodology. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00920-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Li Z, Zhang Y, Anankanbil S, Guo Z. Applications of nanocellulosic products in food: Manufacturing processes, structural features and multifaceted functionalities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Dhali K, Ghasemlou M, Daver F, Cass P, Adhikari B. A review of nanocellulose as a new material towards environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145871. [PMID: 33631573 DOI: 10.1016/j.scitotenv.2021.145871] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Synthetic polymers, commonly referred to as plastics, are anthropogenic contaminants that adversely affect the natural ecosystems. The continuous disposal of long lifespan plastics has resulted in the accumulation of plastic waste, leading to significant pollution of both marine and terrestrial habitats. Scientific pursuit to seek environment-friendly materials from renewable resources has focused on cellulose, the primary reinforcement component of the cell wall of plants, as it is the most abundantly available biopolymer on earth. This paper provides an overview on the current state of science on nanocellulose research; highlighting its extraction procedures from lignocellulosic biomass. Literature shows that the process used to obtain nanocellulose from lignocellulosic biomass greatly influences its morphology, properties and surface chemistry. The efficacy of chemical methods that use alkali, acid, bleaching agents, ionic liquids, deep eutectic solvent for pre-treatment of biomass is discussed. There has been a continuous endeavour to optimize the pre-treatment protocol as it is specific to lignocellulosic biomass and also depends on factors such as nature of the biomass, process and environmental parameters and economic viability. Nanofibers are primarily isolated through mechanical fibrillation while nanocrystals are predominantly extracted using acid hydrolysis. A concise overview on the ways to improve the yield of nanocellulose from cellulosic biomass is also presented in this review. This work also reviews the techniques used to modify the surface properties of nanocellulose by functionalizing surface hydroxyl groups to impart desirable hydrophilic-hydrophobic balance. An assessment on the emerging application of nanocellulose with an emphasis on development of nanocomposite materials for designing environmentally sustainable products is incorporated. Finally, the status of the industrial production of nanocellulose presented, which indicates that there is a continuously increased demand for cellulose nanomaterials. The demand for cellulose is expected to increase further due to its increasing and broadening applications.
Collapse
Affiliation(s)
- Kingshuk Dhali
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; Department of Post-Harvest Engineering, Faculty of Agricultural Engineering, Bidhan Chandra Krishi Viswavidyalaya, Nadia, W.B., India
| | - Mehran Ghasemlou
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Fugen Daver
- School of Engineering, RMIT University, Melbourne, VIC 3083, Australia
| | - Peter Cass
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO) Clayton, VIC 3168, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
15
|
Ali S, Chen X, Ajmal Shah M, Ali M, Zareef M, Arslan M, Ahmad S, Jiao T, Li H, Chen Q. The avenue of fruit wastes to worth for synthesis of silver and gold nanoparticles and their antimicrobial application against foodborne pathogens: A review. Food Chem 2021; 359:129912. [PMID: 33934027 DOI: 10.1016/j.foodchem.2021.129912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/07/2021] [Accepted: 04/18/2021] [Indexed: 01/29/2023]
Abstract
The emerging fruit wastes valorization tactic is a strategy for minimizing the dependence on toxic solvents and chemicals commonly used in the preparation of nanoparticles (NPs). Furthermore, the NPs have exhibited promising antimicrobial applications against foodborne pathogens. Hence, a timely review of this topic is in demand to provide a clear insight into the subject. In this article, the synthesis of silver and gold NPs from fruit wastes and their antimicrobial application against foodborne pathogens are reviewed. The extraction method, mechanism of NPs formation and influences of various experimental parameters on the shape and size of the NPs are described. In the second part of the article, antimicrobial activities against foodborne pathogens regarding the nature, optimum composition, surface structure, synergism and morphology of the NPs are reviewed. Furthermore, challenges and future trends related to the synthesis and antimicrobial application of fruit wastes-mediated NPs are discussed.
Collapse
Affiliation(s)
- Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa-18800, Pakistan
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal, Dir (Upper), Khyber Pakhtunkhwa, Pakistan
| | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
16
|
Areca nut fiber nano crystals, clay nano particles and PVA blended bionanocomposite material for active packaging of food. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01617-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Shruthy R, Jancy S, Preetha R. Cellulose nanoparticles synthesised from potato peel for the development of active packaging film for enhancement of shelf life of raw prawns (
Penaeus monodon
) during frozen storage. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ramesh Shruthy
- Department of Food Process Engineering School of Bioengineering SRM Institute of Science and Technology Tamil Nadu Kattankulathur 603203 India
| | - Stephen Jancy
- Department of Food Process Engineering School of Bioengineering SRM Institute of Science and Technology Tamil Nadu Kattankulathur 603203 India
| | - Radhakrishnan Preetha
- Department of Food Process Engineering School of Bioengineering SRM Institute of Science and Technology Tamil Nadu Kattankulathur 603203 India
| |
Collapse
|
18
|
Effects of Thermal Treatment on the Physical Properties of Edible Calcium Alginate Gel Beads: Response Surface Methodological Approach. Foods 2019; 8:foods8110578. [PMID: 31731744 PMCID: PMC6915525 DOI: 10.3390/foods8110578] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium alginate gel (CAG) has been widely investigated for the development of artificial foods; however, there are few studies on its thermal stability. This study aimed to monitor changes in the physical properties of CAG beads during heat treatment using response surface methodology. Heating temperature (X1, 40–100 °C) and heating time (X2, 5–60 min) were chosen as independent variables. The dependent variables were rupture strength (Y1, kPa), size (Y2, μm), and sphericity (Y3, %). The heating temperature (X1) was the independent variable that had a significant effect on the rupture strength (Y1) and size (Y2). Rupture strength (Y1) increased as the heating temperature (X1) increased; at the same time, the CAG beads size (Y2) decreased. With all conditions, the values of sphericity (Y3) were over 94%. SEM images revealed that increase in the rupture strength of the CAG beads by heat treatment resulted from their porous structures. Loss of moisture by syneresis, occurring with heat treatment, was judged to create a dense porous structure of CAG beads. Our findings offer useful information for cooking or sterilizing food products utilizing CAG beads. In addition, thermal treatment could be applied to produce hard CAG beads with a high rupture strength.
Collapse
|