1
|
Mikołajczyk M, Złotkowska D, Mikołajczyk A. Impact on Human Health of Salmonella spp. and Their Lipopolysaccharides: Possible Therapeutic Role and Asymptomatic Presence Consequences. Int J Mol Sci 2024; 25:11868. [PMID: 39595937 PMCID: PMC11593640 DOI: 10.3390/ijms252211868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Epidemiologically, one of the most important concerns associated with introducing Salmonella spp. into the environment and food chain is the presence of asymptomatic carriers. The oncogenic and oncolytic activity of Salmonella and their lipopolysaccharides (LPSs) is important and research on this topic is needed. Even a single asymptomatic dose of the S. Enteritidis LPS (a dose that has not caused any symptoms of illness) in in vivo studies induces the dysregulation of selected cells and bioactive substances of the nervous, immune, and endocrine systems. LPSs from different species, and even LPSs derived from different serotypes of one species, can define different biological activities. The activity of low doses of LPSs derived from three different Salmonella serotypes (S. Enteritidis, S. Typhimurium, and S. Minnesota) affects the neurochemistry of neurons differently in in vitro studies. Studies on lipopolysaccharides from different Salmonella serotypes do not consider the diversity of their activity. The presence of an LPS from S. Enteritidis in the body, even in amounts that do not induce any symptoms of illness, may lead to unknown long-term consequences associated with its action on the cells and biologically active substances of the human body. These conclusions should be important for both research strategies and the pharmaceutical industry &.
Collapse
Affiliation(s)
- Mateusz Mikołajczyk
- Division of Medicine and Dentistry, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Anita Mikołajczyk
- Department of Psychology and Sociology of Health and Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Orzechowska K, Kopij G, Paukszto L, Dobrzyn K, Kiezun M, Jastrzebski J, Kaminski T, Smolinska N. Chemerin effect on transcriptome of the porcine endometrium during implantation determined by RNA-sequencing†. Biol Reprod 2022; 107:557-573. [PMID: 35349661 DOI: 10.1093/biolre/ioac063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
Abstract
It is well known that the body's metabolism and reproduction are closely related. Chemerin is one of many biologically active proteins secreted by the adipose tissue involved in the regulation of the energy homeostasis of the organism. In the present study, RNA-Sequencing (RNA-Seq) was performed to investigate the differentially expressed genes (DEGs), long non-coding RNAs (lncRNAs) and alternatively spliced (AS) transcripts in the cultured in vitro porcine endometrium exposed to chemerin for 24 hours (CHEM; 400 ng/ml) collected during the implantation period (15 to 16 days of gestation). High-throughput sequencing of transcriptomes was performed on the Illumina NovaSeq 6000 platform (Illumina, USA). In the current study, among all 130 DEGs, 58 were up-regulated and were 72 down-regulated in the CHEM-treated group. DEGs were assigned to 73 functional annotations. Twelve identified lncRNAs indicated a difference in the expression profile after CHEM administration. Additionally, we detected 386 differentially AS events encompassed 274 protein-coding genes and 2 lncRNAs. All AS events were divided into 5 alternative splicing types: alternative 3' splice site (A3SS), 5' splice site (A5SS), mutually exclusive exons (MXE), retention intron (RI), and skipping exon (SE). Within all AS events, we identified 42 A3SS, 43 A5SS, 53 MXE, 9 RI, and 239 SE. In summary, CHEM affects the transcriptomic profile of the porcine endometrium, controlling the expression of numerous genes, including those involved in the cell migration and adhesion, angiogenesis, inflammation, and steroidogenesis. It can be assumed that CHEM may be an important factor for a proper course of gestation and embryo development.
Collapse
Affiliation(s)
- Kinga Orzechowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Makowczenko KG, Jastrzebski JP, Paukszto L, Dobrzyn K, Kiezun M, Smolinska N, Kaminski T. Chemerin Impact on Alternative mRNA Transcription in the Porcine Luteal Cells. Cells 2022; 11:715. [PMID: 35203364 PMCID: PMC8870241 DOI: 10.3390/cells11040715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Chemerin participates in the regulation of processes related to physiological and disorder mechanisms in mammals, including metabolism, obesity, inflammation, and reproduction. In this study, we have investigated chemerin influence on alternative mRNA transcription within the porcine luteal cell transcriptome, such as differential expression of long non-coding RNAs (DELs) and their interactions with differentially expressed genes (DEGs), differences in alternative splicing of transcripts (DASs), and allele-specific expression (ASEs) related to the single nucleotide variants (SNVs) frequency. Luteal cells were collected from gilts during the mid-luteal phase of the oestrous cycle. After in vitro culture of cells un-/treated with chemerin, the total RNA was isolated and sequenced using the high-throughput method. The in silico analyses revealed 24 DELs cis interacting with 6 DEGs and trans-correlated with 300 DEGs, 137 DASs events, and 18 ASEs. The results enabled us to analyse metabolic and signalling pathways in detail, providing new insights into the effects of chemerin on the corpus luteum functions related to inflammatory response, leukocyte infiltration, the occurrence of luteotropic and luteolytic signals (leading to apoptosis and/or necroptosis). Validation of the results using qPCR confirmed the predicted expression changes. Chemerin at physiological concentrations significantly modifies the transcription processes in the porcine luteal cells.
Collapse
Affiliation(s)
- Karol G. Makowczenko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| | - Jan P. Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Lukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-719 Olsztyn, Poland;
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| |
Collapse
|
4
|
Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation. IMMUNO 2021. [DOI: 10.3390/immuno1040035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response of gestating females to infection or stress can disrupt gene expression in the offspring’s amygdala, resulting in lasting neurodevelopmental, physiological, and behavioral disorders. The effects of maternal immune activation (MIA) can be impacted by the offspring’s sex and exposure to additional stressors later in life. The objectives of this study were to investigate the disruption of alternative splicing patterns associated with MIA in the offspring’s amygdala and characterize this disruption in the context of the second stress of weaning and sex. Differential alternative splicing was tested on the RNA-seq profiles of a pig model of viral-induced MIA. Compared to controls, MIA was associated with the differential alternative splicing (FDR-adjusted p-value < 0.1) of 292 and 240 genes in weaned females and males, respectively, whereas 132 and 176 genes were differentially spliced in control nursed female and male, respectively. The majority of the differentially spliced (FDR-adjusted p-value < 0.001) genes (e.g., SHANK1, ZNF672, KCNA6) and many associated enriched pathways (e.g., Fc gamma R-mediated phagocytosis, non-alcoholic fatty liver disease, and cGMP-PKG signaling) have been reported in MIA-related disorders including autism and schizophrenia in humans. Differential alternative splicing associated with MIA was detected in the gene MAG across all sex-stress groups except for unstressed males and SLC2A11 across all groups except unstressed females. Precise understanding of the effect of MIA across second stressors and sexes necessitates the consideration of splicing isoform profiles.
Collapse
|
5
|
Transcriptome, Spliceosome and Editome Expression Patterns of the Porcine Endometrium in Response to a Single Subclinical Dose of Salmonella Enteritidis Lipopolysaccharide. Int J Mol Sci 2020; 21:ijms21124217. [PMID: 32545766 PMCID: PMC7352703 DOI: 10.3390/ijms21124217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial infections at a young age can lead to fertility issues in adulthood. Bacterial endotoxins, such as lipopolysaccharide (LPS), can participate in long-term molecular changes even at low concentrations. Lipopolysaccharide plays a crucial role in the progression of septic shock, inflammation and auto-immune diseases. The aim of this study was to describe transcriptomic modulations in the porcine endometrium, induced in vivo by a single subclinical dose of LPS from Salmonella Enteritidis. which did not produce clinical symptoms of toxicity. The RNA-seq methodology was applied to reveal 456 differentially expressed regions, including 375 genes, four long noncoding RNAs, and 77 other unclassified transcripts. Two independent methods confirmed 118 alternatively spliced genes that participate i.a., in the formation of the MHC-I complex and the adaptive immune response. Single nucleotide variant-calling algorithms supported the identification of 3730 allele-specific expression variants and 57 canonical A-to-I RNA editing sites. The results demonstrated that the differential expression of genes involved in inflammation, immune response, angiogenesis and endometrial development may be maintained for up to 7 days after exposure to LPS. RNA editing sites and long noncoding RNAs (lncRNAs) play an important role in transcriptional regulatory machinery in the porcine endometrium in response to LPS administration.
Collapse
|
6
|
Makowczenko KG, Jastrzebski JP, Szeszko K, Smolinska N, Paukszto L, Dobrzyn K, Kiezun M, Rytelewska E, Kaminska B, Kaminski T. Transcription Analysis of the Chemerin Impact on Gene Expression Profile in the Luteal Cells of Gilts. Genes (Basel) 2020; 11:E651. [PMID: 32545672 PMCID: PMC7349926 DOI: 10.3390/genes11060651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
Chemerin is a recently discovered adipokine that participates in the regulation of many physiological and disorder-related processes in mammals, including metabolism, inflammatory reactions, obesity, and reproduction. We investigated how chemerin affects the transcriptome profile of porcine luteal cells. The luteal cells were acquired from mature gilts. After the in vitro culturing with and without chemerin, the total RNAs were isolated and high-throughput sequencing was performed. Obtained datasets were processed using bioinformatic tools. The study revealed 509 differentially expressed genes under the chemerin influence. Their products take part in many processes, important for the functions of the corpus luteum, such as steroids and prostaglandins synthesis, NF-κB and JAK/STAT signal transducing pathways, and apoptosis. The expression of the CASP3, HSD3B7, IL1B, and PTGS2 genes, due to their important role in the physiology of the corpus luteum, was validated using the quantitative real-time polymerase chain reaction (qPCR) method. The qPCR confirmed the changes of gene expression. Chemerin in physiological concentrations significantly affects the expression of many genes in luteal cells of pigs, which is likely to result in modification of physiological processes related to reproduction.
Collapse
Affiliation(s)
- Karol G. Makowczenko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Jan P. Jastrzebski
- Bioinformatics Core Facility, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (L.P.)
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Lukasz Paukszto
- Bioinformatics Core Facility, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (L.P.)
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| |
Collapse
|