1
|
Geng F, Zhang M, Sun T, Xie J, Gan J, Li X, Xue B. Effect of molecular weight of chitosan on quercetin-loaded chitosan nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9531-9539. [PMID: 39096019 DOI: 10.1002/jsfa.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/22/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The widespread use of quercetin is limited by its instability, low solubility and poor oral bioavailability. Encapsulation of quercetin using a nanoparticle delivery system is an effective way to overcome these drawbacks. RESULTS The effect of the molecular weight (Mw) of chitosan (CS) (100, 200, 500 and 1000 kDa) on quercetin-loaded chitosan nanoparticles (QCNPs) was investigated. The structure, stability, release properties and antioxidant activities of the nanoparticles (QCNP-10, QCNP-20, QCNP-50 and QCNP-100) were assessed. Particle size of QCNPs decreased and polydispersity index increased with the increasing Mw of CS. The main forces involved in the formation of QCNPs were hydrogen bonding and hydrophobic interaction. X-ray diffraction verified that quercetin was loaded into CS nanoparticles. The photostability and thermal stability of QCNPs increased with increasing Mw of CS. QCNP-100 exhibited the lowest release rate in a mixture of water and anhydrous ethanol. The antioxidant activities of QCNPs were enhanced with increasing Mw of CS, and QCNP-100 possessed the highest antioxidant activities, which might be relevant to its smallest particle size. CONCLUSION Overall, these results revealed that the Mw of CS affected the properties of QCNPs, and QCNP-100 possessed the smallest particle, best stability, lowest release rate and highest antioxidant activities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Geng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Mengyang Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jianhong Gan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bin Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Mostafa H, Hamdi M, Airouyuwaa JO, Hamed F, Wang Y, Maqsood S. Lignin and green solvent extracted phenolic compounds from date palm leaves as functional ingredients for the formulation of soy protein isolate biocomposite packaging materials: A circular packaging concept. Int J Biol Macromol 2024; 279:134843. [PMID: 39159795 DOI: 10.1016/j.ijbiomac.2024.134843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The current study investigated valorization of lignin nanoparticles (LNPs) and phenolic compounds loaded in chitosan (DLECNPs) extracted from date palm leaves into the soy protein isolate (SPI) biocomposite films. The mechanical, structural, barrier, physiochemical, thermal, optical, antioxidant, and antimicrobial properties of the formulated composite films were investigated. The findings showed that the incorporation of DLECNPs into the SPI films significantly improved the film's antioxidant properties by more than 3 times and showed antibacterial inhibition zone in the range of 10-15 mm against six pathogenic bacteria. Further, incorporating LNPs into SPI-DLECNPs films notably improved the mechanical properties from 4.32 MPa and 29.27 % tensile strength and elongation at break, respectively to 10.13 MPa and 54.94 %, the water vapor permeability from 7.38 g/Pa s m to 5.59 g/Pa s m, and the antibacterial inhibition zone from a range of 10.2 mm to 15.0-21.5 mm as well as making the films more heterogeneous and stronger than control SPI film. Moreover, LNPs changed the initial films' color from light yellow to dark red and reduced the films' transparency. The results indicated that LNPs reinforced SPI composite films showed significant improvements in several properties and thus can be used as a potential ingredient for formulation of biodegradable packaging films.
Collapse
Affiliation(s)
- Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Marwa Hamdi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Jennifer Osamede Airouyuwaa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Fathalla Hamed
- Department of Physics, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; ASPIRE Research Institute for Food Security in the Dry lands (ARIFSID), United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
3
|
Arjunan N, Thiruvengadam V, Sushil SN. Nanoparticle-mediated dsRNA delivery for precision insect pest control: a comprehensive review. Mol Biol Rep 2024; 51:355. [PMID: 38400844 DOI: 10.1007/s11033-023-09187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems have emerged as powerful tools in the field of pest management, offering precise and effective means of delivering double-stranded RNA (dsRNA), a potent agent for pest control through RNA interference (RNAi). This comprehensive review aims to evaluate and compare various types of nanoparticles for their suitability in dsRNA delivery for pest management applications. The review begins by examining the unique properties and advantages of different nanoparticle materials, including clay, chitosan, liposomes, carbon, gold and silica. Each material's ability to protect dsRNA from degradation and its potential for targeted delivery to pests are assessed. Furthermore, this review delves into the surface modification strategies employed to enhance dsRNA delivery efficiency. Functionalization with oligonucleotides, lipids, polymers, proteins and peptides is discussed in detail, highlighting their role in improving stability, cellular uptake, and specificity of dsRNA delivery.This review also provides valuable guidance on choosing the most suitable nanoparticle-based system for delivering dsRNA effectively and sustainably in pest management. Moreover, it identifies existing knowledge gaps and proposes potential research directions aimed at enhancing pest control strategies through the utilization of nanoparticles and dsRNA.
Collapse
Affiliation(s)
- Nareshkumar Arjunan
- Division of Molecular Entomology, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India.
| | - Venkatesan Thiruvengadam
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, H.A. Farm Post, Hebbal, P.B. No. 2491, Bangalore, 560024, India.
| | - S N Sushil
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, H.A. Farm Post, Hebbal, P.B. No. 2491, Bangalore, 560024, India
| |
Collapse
|
4
|
Zhao X, Sun L, Wang J, Xu X, Ni S, Liu M, Hu K. Nose to brain delivery of Astragaloside IV by β-Asarone modified chitosan nanoparticles for multiple sclerosis therapy. Int J Pharm 2023; 644:123351. [PMID: 37640088 DOI: 10.1016/j.ijpharm.2023.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Multiple sclerosis (MS), an autoimmune disease, has been considered an inflammatory disorder of the central nervous system (CNS) with demyelination and axonal damage. Although there are certain first-line therapies to treat MS, their unsatisfactory efficacy is partly due to the limited CNS access after systemic administration. Besides, there is an urgent need to treat MS by enhancing remyelination or neuroprotection, or dampen the activity of microglia. Astragaloside IV (ASI) bears anti-inflammatory, antioxidant, remyelination and neuroprotective activity. While its poor permeability, relatively high molecular weight and low lipophilicity restrict it to reach the brain. Therefore, β-asarone modified ASI loaded chitosan nanoparticles (ASI-βCS-NP) were prepared to enhance the nose-to-brain delivery and therapeutic effects of ASI on EAE mice. The prepared ASI-βCS-NP showed mean size of about 120 nm, and zeta potential from +19 to +25 mV. DiR-βCS-NP was confirmed with good nose-to-brain targeting ability. After intranasal administration, the ASI-βCS-NP significantly reduced behavioral scores, decreased weight loss, suppressed inflammatory infiltration and astrocyte/microglial activation, reduced demyelination and increased remyelination on a mice EAE model. Our findings indicate that ASI-βCS-NP may be a potent treatment for MS after nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Xiao Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lixue Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jing Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiaolu Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Mei Liu
- Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
5
|
Xiong Y, Feng YX, Chang M, Wang Q, Yin SN, Jian LY, Ren DF. Formulated chitosan-sodium tripolyphosphate nanoparticles for co-encapsulation of ellagic acid and anti-inflammatory peptide: characterization, stability and anti-inflammatory activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3447-3456. [PMID: 36812130 DOI: 10.1002/jsfa.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chitosan (CS) and tripolyphosphate (TPP) can be combined in the development of a material with synergistic properties and promising potential for the conservation of food products. In this study, ellagic acid (EA) and anti-inflammatory peptide (FPL)-loaded CS nanoparticles (FPL/EA NPs) were prepared using the ionic gelation method and optimal preparation conditions were obtained through a single factor design. RESULTS The synthesized nanoparticles (NPs) were characterized using a scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Nanoparticles were spherical, with an average size of 308.33 ± 4.61 nm, a polydispersity index (PDI) of 0.254, a zeta potential of +31.7 ± 0.08 mV, and a high encapsulation capacity (22.16 ± 0.79%). An in vitro release study showed that EA/FPL had a sustainable release from FPL/EA NPs. The stability of the FPL/EA NPs was evaluated for 90 days at 0, 25, and 37 °C. Significant anti-inflammatory activity of FPL/EA NPs was verified by nitric oxide (NO) and tumor necrosis factor-α (TNF-α) reduction. CONCLUSION These characteristics support the use of CS nanoparticles to encapsulate EA and FPL and improve their bioactivity in food products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Xiong
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yan-Xia Feng
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Min Chang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Qian Wang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Sheng-Nan Yin
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Liu-Yu Jian
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Ding Z, Chen W, Jiang F, Mo M, Bi Y, Kong F. Synthesis, characterization and in vitro digestion of folate conjugated chitosan-loaded proanthocyanidins nanoparticles. Food Res Int 2023; 163:112141. [PMID: 36596096 DOI: 10.1016/j.foodres.2022.112141] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Proanthocyanidins have significant biological activity and pharmacological effects and are widely used in food, medicine, and cosmetics. Chitosan nanoparticles loaded with proanthocyanidins have been proven to improve their biological activity. Given some deficiencies of chitosan (CS), the modification of chitosan by folic acid (FA) can obtain new variants with different functions. For this objective, the folic acid conjugated chitosan was designed, and in vitro properties of proanthocyanidins loaded nanoparticles were studied systemically. Firstly, folic acid-chitosan conjugate (FA-CS) was synthesized and characterized. Folate-coupled chitosan-loaded proanthocyanidin nanoparticles (PC-CS/FA-NPs) were prepared by ionic gelation technique using FA-CS as a carrier. The successful nanoparticle synthesis was characterized by dynamic light scattering (DLS) techniques and Fourier transform infrared (FT-IR) spectroscopy. The synthesized nanoparticles exhibited a spherical shape and smooth and uniform distribution features with a size range of less than 300 nm, as observed by a scanning electron microscope (SEM). Meanwhile, PC-CS/FA-NPs had good thermal and gastrointestinal digestive stability and had a protective effect on AAPH-induced erythrocyte oxidative hemolysis. In conclusion, folic acid decorated chitosan nanoparticles improved the stability and bioavailability of proanthocyanidins in gastrointestinal digestion.
Collapse
Affiliation(s)
- Zhendong Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Pharmacy, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Weiming Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fengyu Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengmiao Mo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Zaker H, Taymouri S, Mostafavi A. Formulation and physicochemical characterization of azithromycin-loaded cubosomes. Res Pharm Sci 2022; 18:49-58. [PMID: 36846738 PMCID: PMC9951788 DOI: 10.4103/1735-5362.363595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 11/01/2022] [Indexed: 12/25/2022] Open
Abstract
Background and purpose Azithromycin (AZ) is a macrolide antibiotic that is soluble in saliva pH; its bitter taste can be well sensed, decreasing the ability of the patient to get the drug. Thus, handling such a bitter taste is challenging in developing the oral formulation. A wide range of methods has been applied to tackle this problem. Cubosomes are considered nanoparticles forming cubic three-dimensional structures with a taste-masking effect. This research aimed to apply cubosomes to mask AZ's bitter taste. Experimental approach Cubosomes which contained AZ were obtained by applying the film hydration method. Design expert software (version 11) was then employed for optimizing cubosomes that contained the drug. The encapsulation efficiency, particle size as well as polydispersity index of drug-loaded cubosomes were then subjected to evaluation. Assessment of particle morphology was done through SEM. The antimicrobial qualities of AZ-loaded cubosomes were then assessed by utilizing the disc diffusion method. Then, the taste masking study was carried out by referring to human volunteers. Finding/Results AZ-loaded cubosomes were spherical in terms of shape and in the 166-272 nm range, with a polydispersity index of 0.17-0.33 and encapsulation efficiency of 80-92%. The results related to the microbial culture revealed that the antimicrobial qualities related to AZ-loaded cubosomes were like those of AZ. The results obtained by taste evaluation also revealed that the cubosomes could well mask the drug's bitter taste. Conclusion and implications These findings, thus, revealed that while the antimicrobial impact of AZ is not under the influence of loading in cubosomes, its taste could be well improved.
Collapse
Affiliation(s)
- Hoorieh Zaker
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Novel Drug Delivery Systems Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Corresponding authors: A. Mostafavi, Tel: +98-3137927117, Fax: +98-3136680011
S. Taymouri, Tel: +98-37927065, Fax: +98-3136680011
| | - Abolfazl Mostafavi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Corresponding authors: A. Mostafavi, Tel: +98-3137927117, Fax: +98-3136680011
S. Taymouri, Tel: +98-37927065, Fax: +98-3136680011
| |
Collapse
|
8
|
Bodbodak S, Nejatian M, Ghandehari Yazdi AP, Kamali Rousta L, Rafiee Z, Jalali-Jivan M, Kharazmi MS, Jafari SM. Improving the thermal stability of natural bioactive ingredients via encapsulation technology. Crit Rev Food Sci Nutr 2022; 64:2824-2846. [PMID: 36178297 DOI: 10.1080/10408398.2022.2127145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds (bioactives) such as phenolic acids, coumarins, flavonoids, lignans and carotenoids have a marked improvement effect on human health by acting on body tissues or cells. Nowadays, with increasing levels of knowledge, consumers prefer foods that can provide bioactives beside the necessary nutrients (e.g., vitamins, essential fatty acids and minerals). However, an important barrier for incorporating bioactives into foods is their low thermal stability. Nevertheless, thermal processing is widely used by the food industries to achieve food safety and desired texture. The aim of this work is to give an overview of encapsulation technology to improve thermal stability of bioactives incorporated into different food products. Almost all thermal analysis and non-thermal methods in the literature suggest that incorporation of bioactives into different walls can effectively improve the thermal stability of bioactives. The level of such thermal enhancement depends on the strength of the bioactive interaction and wall molecules. Furthermore, contradictory results have been reported in relation to the effect of encapsulation technique using the same wall on thermal stability of bioactives. To date, the potential to increase the thermal resistance of various bioactives by gums, carbohydrates, and proteins have been extensively studied. However, further studies on the comparison of walls and encapsulation methods to form thermally stable carriers seem to be needed. In this regard, the same nature of bioactives and the specific protocol in the report of study results should be considered to compare the data and select the optimum conditions of encapsulation to achieve maximum thermal stability.
Collapse
Affiliation(s)
- Samad Bodbodak
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran
| | - Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Leila Kamali Rousta
- Department of Food Research and Development, Zar Research and Industrial Development Group, Alborz, Iran
| | - Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Garcia-Carrasco M, Picos-Corrales LA, Gutiérrez-Grijalva EP, Angulo-Escalante MA, Licea-Claverie A, Heredia JB. Loading and Release of Phenolic Compounds Present in Mexican Oregano (Lippia graveolens) in Different Chitosan Bio-Polymeric Cationic Matrixes. Polymers (Basel) 2022; 14:polym14173609. [PMID: 36080684 PMCID: PMC9459739 DOI: 10.3390/polym14173609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mexican oregano (Lippia graveolens) polyphenols have antioxidant and anti-inflammatory potential, but low bioaccessibility. Therefore, in the present work the micro/nano-encapsulation of these compounds in two different matrixes of chitosan (CS) and chitosan-b-poly(PEGMA2000) (CS-b-PPEGMA) is described and assessed. The particle sizes of matrixes of CS (~955 nm) and CS-b-PPEGMA (~190 nm) increased by 10% and 50%, respectively, when the phenolic compounds were encapsulated, yielding loading efficiencies (LE) between 90–99% and 50–60%, correspondingly. The release profiles in simulated fluids revealed a better control of host–guest interactions by using the CS-b-PPEGMA matrix, reaching phenolic compounds release of 80% after 24 h, while single CS retained the guest compounds. The total reducing capacity (TRC) and Trolox equivalent antioxidant capacity (TEAC) of the phenolic compounds (PPHs) are protected and increased (more than five times) when they are encapsulated. Thus, this investigation provides a standard encapsulation strategy and relevant results regarding nutraceuticals stabilization and their improved bioaccessibility.
Collapse
Affiliation(s)
- Melissa Garcia-Carrasco
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Erick P. Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Miguel A. Angulo-Escalante
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de Mexico/Instituto Tecnológico de Tijuana, A.P. 1166, Tijuana 22000, Baja California, Mexico
- Correspondence: (A.L.-C.); (J.B.H.)
| | - J. Basilio Heredia
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
- Correspondence: (A.L.-C.); (J.B.H.)
| |
Collapse
|
10
|
Development of Turmeric Oil—Loaded Chitosan/Alginate Nanocapsules for Cytotoxicity Enhancement against Breast Cancer. Polymers (Basel) 2022; 14:polym14091835. [PMID: 35567007 PMCID: PMC9101660 DOI: 10.3390/polym14091835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Turmeric oil (TO) exhibits various biological activities with limited therapeutic applications due to its instability, volatility, and poor water solubility. Here, we encapsulated TO in chitosan/alginate nanocapsules (CS/Alg-NCs) using o/w emulsification to enhance its physicochemical characteristics, using poloxamer 407 as a non-ionic surfactant. TO-loaded CS/Alg-NCs (TO-CS/Alg-NCs) were prepared with satisfactory features, encapsulation efficiency, release characteristics, and cytotoxicity against breast cancer cells. The average size of the fabricated TO-CS/Alg-NCs was around 200 nm; their distribution was homogenous, and their shapes were spherical, with smooth surfaces. The TO-CS/Alg-NCs showed a high encapsulation efficiency, of 70%, with a sustained release of TO at approximately 50% after 12 h at pH 7.4 and 5.5. The TO-CS/Alg-NCs demonstrated enhanced cytotoxicity against two breast cancer cells, MDA-MB-231 and MCF-7, compared to the unencapsulated TO, suggesting that CS/Alg-NCs are potential nanocarriers for TO and can serve as prospective candidates for in vivo anticancer activity evaluation.
Collapse
|
11
|
The spatial-dimensional and temporal-dimensional fate of nanocarrier-loaded dissolving microneedles with different lengths of needles. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Arsenic removal approaches: A focus on chitosan biosorption to conserve the water sources. Int J Biol Macromol 2021; 192:1196-1216. [PMID: 34655588 DOI: 10.1016/j.ijbiomac.2021.10.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Globally, millions of people have no access to clean drinking water and are either striving for that or oppressed to intake polluted water. Arsenic is considered one of the most hazardous contaminants in water bodies that reaches there due to various natural and anthropogenic activities. Modified chitosan has gained much attention from researchers due to its potential for arsenic removal. This review focuses on the need and potential of chitosan-based biosorbents for arsenic removal from water systems. Chitosan is a low-cost, abundant, biodegradable biopolymer that possesses unique structural aspects and functional sites for the adsorption of contaminants like arsenic species from contaminated water. The chitosan-based biosorbents had also been modified using various techniques to enhance their arsenic removal efficiencies. This article reviews various forms of chitosan and parameters involved in chitosan modification which eventually affect the arsenic removal efficiency of the resultant sorbents. The literature revealed that the modified chitosan-based sorbents could express higher adsorption efficiency compared to those prepared from native chitosan. The sustainability of the chitosan-based sorbents has also been considered in terms of reusability. Finally, some recommendations have been underlined for further improvements in this domain.
Collapse
|
13
|
Ding Z, Mo M, Zhang K, Bi Y, Kong F. Preparation, characterization and biological activity of proanthocyanidin-chitosan nanoparticles. Int J Biol Macromol 2021; 188:43-51. [PMID: 34364936 DOI: 10.1016/j.ijbiomac.2021.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
In this study, proanthocyanidin-loaded chitosan nanoparticles (PC-CS-NPs) were produced using ionotropic gelation and characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and dynamic light scattering (DLS). The synthesized nanoparticles were smaller than 300 nm and had a spherical shape, smooth topography and homogenous morphology as observed through scanning electron microscopy (SEM). In vitro release study showed that proanthocyanidins (PC) had a sustainable release from PC-CS-NPs in different buffer media. PC-CS-NPs had higher or comparable potency in scavenging DPPH and ABTS free radicals as compared to native drugs. Furthermore, PC-CS-NPs also inhibited the growth of four bacteria species, whose degree of inhibition depended on the bacterial strain. The results of SEM confirmed the changes in the microstructure of bacteria. Our findings support the use of chitosan nanoparticles to encapsulate PC and improve its bioactivity in food products.
Collapse
Affiliation(s)
- Zhendong Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengmiao Mo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kai Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Wang M, Li L, Wan M, Lin Y, Tong Y, Cui Y, Deng H, Tan C, Kong Y, Meng X. Preparing, optimising, and evaluating chitosan nanocapsules to improve the stability of anthocyanins from Aronia melanocarpa. RSC Adv 2021; 11:210-218. [PMID: 35423040 PMCID: PMC8690385 DOI: 10.1039/d0ra08162k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
During in vitro digestion and enviromental storage, the chitosan nanocapsulation was successfully improved the physical and oxidative stability of anthocyanins from Aronia melanocarpa.
Collapse
Affiliation(s)
- Mingyue Wang
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Li Li
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Meizhi Wan
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Yang Lin
- Department of Food Science and Technology
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Yuqi Tong
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Yanmin Cui
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Haotian Deng
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Chang Tan
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Yanwen Kong
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Xianjun Meng
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| |
Collapse
|
15
|
Johnson M, Gaffney C, White V, Bechelli J, Balaraman R, Trad T. Non-hydrolytic synthesis of caprylate capped cobalt ferrite nanoparticles and their application against Erwinia carotovora and Stenotrophomonas maltophilia. J Mater Chem B 2020; 8:10845-10853. [PMID: 33180891 DOI: 10.1039/d0tb02283g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Magnetic cobalt Ferrite nanoparticles capped with caprylate groups, CH3(CH2)6CO2-, have been synthesized using a novel non-hydrolytic coprecipitation method under inert conditions. Particle diameter was characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The spinel ferrite crystal phase was verified using X-ray diffraction (XRD), and the presence of the capping agent was confirmed using Fourier Transform Infrared spectroscopy (FTIR). Bactericidal effects of the particles were tested against broth cultures of Erwinia carotovora and Stenotrophomonas maltophilia. The final particles had an average diameter of 3.81 nm and readily responded to a neodymium magnet. The particles did have a significant effect on the OD600 of both broth cultures.
Collapse
Affiliation(s)
- Morgan Johnson
- Department of Chemistry, Sam Houston State University, Huntsville, Texas 77340, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Sardinelle protein isolate as a novel material for oil microencapsulation: Novel alternative for fish by-products valorisation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111164. [DOI: 10.1016/j.msec.2020.111164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/06/2020] [Accepted: 06/05/2020] [Indexed: 01/17/2023]
|
17
|
Hosseini SH, Zohreh N, Karimi N, Gaeini N, Alipour S, Seidi F, Gholipour N. Magnetic nanoparticles double wrapped into cross-linked salep/PEGylated carboxymethyl cellulose; a biocompatible nanocarrier for pH-triggered release of doxorubicin. Int J Biol Macromol 2020; 158:994-1006. [PMID: 32434748 DOI: 10.1016/j.ijbiomac.2020.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
A magnetic nanocarrier was synthesized in which Fe3O4 nanoparticles were encapsulated into double layers of polysaccharide shells. The first shell, which was composed of cross-linked salep polysaccharide, contained multiple nitrogen atoms in its structure and provided numerous sites for multiple functionalization. A fluorescence dye and doxorubicin, as widely used chemotherapy agent, were easily attached to the first shell and then a second shell of PEGylated carboxymethyl cellulose enveloped the drug loaded carrier to enhance its biocompatibility and regulates the drug release behavior. The results of drug loading and release behavior showed that the resulting nanocarrier can carry large amounts of drug molecules and a remarkable pH-sensitive release was observed in vitro. The hemolysis and coagulation assays proved the biocompatibility of nanocarrier toward red blood cells and the MTT experiments confirmed that the drug loaded nanocarrier is highly toxic for MCF-7 cancer cells while the unloaded nanocarrier was almost nontoxic. Further flow cytometry experiments and confocal microscopy demonstrated that the double layered magnetic nanocarrier can penetrate into the cells and efficiently release the drug molecules into the cell nucleus. Moreover, the results of MRI experiments performed on the nanocarrier showed that it can be serve as a negative MRI contrast agent.
Collapse
Affiliation(s)
- Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Nafiseh Karimi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Nahid Gaeini
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Sakineh Alipour
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Nazila Gholipour
- Chemical Injuries Research Center, Faculty of Pharmacy, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|