1
|
Wang C, Zhao J, Lin Y, Lwin SZC, El-Telbany M, Masuda Y, Honjoh KI, Miyamoto T. Characterization of Two Novel Endolysins from Bacteriophage PEF1 and Evaluation of Their Combined Effects on the Control of Enterococcus faecalis Planktonic and Biofilm Cells. Antibiotics (Basel) 2024; 13:884. [PMID: 39335057 PMCID: PMC11428236 DOI: 10.3390/antibiotics13090884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Endolysin, a bacteriophage-derived lytic enzyme, has emerged as a promising alternative antimicrobial agent against rising multidrug-resistant bacterial infections. Two novel endolysins LysPEF1-1 and LysPEF1-2 derived from Enterococcus phage PEF1 were cloned and overexpressed in Escherichia coli to test their antimicrobial efficacy against multidrug-resistant E. faecalis strains and their biofilms. LysPEF1-1 comprises an enzymatically active domain and a cell-wall-binding domain originating from the NLPC-P60 and SH3 superfamilies, while LysPEF1-2 contains a putative peptidoglycan recognition domain that belongs to the PGRP superfamily. LysPEF1-1 was active against 89.86% (62/69) of Enterococcus spp. tested, displaying a wider antibacterial spectrum than phage PEF1. Moreover, two endolysins demonstrated lytic activity against additional gram-positive and gram-negative species pretreated with chloroform. LysPEF1-1 showed higher activity against multidrug-resistant E. faecalis strain E5 than LysPEF1-2. The combination of two endolysins effectively reduced planktonic cells of E5 in broth and was more efficient at inhibiting biofilm formation and removing biofilm cells of E. faecalis JCM 7783T than used individually. Especially at 4 °C, they reduced viable biofilm cells by 4.5 log after 2 h of treatment on glass slide surfaces. The results suggest that two novel endolysins could be alternative antimicrobial agents for controlling E. faecalis infections.
Collapse
Affiliation(s)
- Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Ken-ichi Honjoh
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| |
Collapse
|
2
|
Zhang Y, Shao Y, You H, Shen Y, Miao F, Yuan C, Chen X, Zhai M, Shen Y, Zhang J. Characterization and therapeutic potential of MRABP9, a novel lytic bacteriophage infecting multidrug-resistant Acinetobacter baumannii clinical strains. Virology 2024; 595:110098. [PMID: 38705084 DOI: 10.1016/j.virol.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Acinetobacter baumannii is one of the most important pathogens of healthcare-associated infections. The rising prevalence of multidrug-resistant A. baumannii (MRAB) strains and biofilm formation impact the outcome of conventional treatment. Phage-related therapy is a promising strategy to tame troublesome multidrug-resistant bacteria. Here, we isolated and evaluated a highly efficient lytic phage called MRABP9 from hospital sewage. The phage was a novel species within the genus Friunavirus and exhibited lytic activity against 2 other identified MRAB strains. Genomic analysis revealed it was a safe virulent phage and a pectate lyase domain was identified within its tail spike protein. MRABP9 showed potent bactericidal and anti-biofilm activity against MRAB, significantly delaying the time point of bacterial regrowth in vitro. Phage administration could rescue the mice from acute lethal MRAB infection. Considering its features, MRABP9 has the potential as an efficient candidate for prophylactic and therapeutic use against acute infections caused by MRAB strains.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China.
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Hongyang You
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Chenyan Yuan
- Department of Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Yi Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| |
Collapse
|
3
|
Zhang S, Zhang C, Wu J, Liu S, Zhang R, Handique U. Isolation, characterization and application of noble bacteriophages targeting potato common scab pathogen Streptomyces stelliscabiei. Microbiol Res 2024; 283:127699. [PMID: 38520838 DOI: 10.1016/j.micres.2024.127699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Bacteriophages have emerged as promising alternatives to pesticides for controlling bacterial pathogens in crops. Among these pathogens, Streptomyces stelliscabiei (syn. S. stelliscabiei) is a primary causative agent of potato common scab (PCS), resulting in substantial global economic losses. The traditional management methods for PCS face numerous challenges, highlighting the need for effective and environmentally friendly control strategies. In this study, we successfully isolated three novel bacteriophages, namely Psst1, Psst2, and Psst4, which exhibited a broad host range encompassing seven S. stelliscabiei strains. Morphological analysis revealed their distinct features, including an icosahedral head and a non-contractile tail. These phages demonstrated stability across a broad range of temperatures (20-50°C), pH (pH 3-11), and UV exposure time (80 min). Genome sequencing revealed double-stranded DNA phage with open reading frames encoding genes for phage structure, DNA packaging and replication, host lysis and other essential functions. These phages lacked genes for antibiotic resistance, virulence, and toxicity. Average nucleotide identity, phylogenetic, and comparative genomic analyses classified the three phages as members of the Rimavirus genus, with Psst1 and Psst2 representing novel species. All three phages efficiently lysed S. stelliscabiei in the liquid medium and alleviated scab symptom development and reduced pathogen abundance on potato slices. Furthermore, phage treatments of radish seedlings alleviated the growth inhibition caused by S. stelliscabiei with no disease symptoms. In soil potted experiments, phages significantly reduced disease incidence by 40%. This decrease is attributed to a reduction in pathogen density and the selection of S. stelliscabiei strains with reduced virulence and slower growth rates in natural environments. Our study is the first to report the isolation of three novel phages that infect S. stelliscabiei as a host bacterium. These phages exhibit a broad host range, and demonstrate stability under a variety of environmental conditions. Additionally, they demonstrate biocontrol efficacy against bacterial infections in potato slices, radish seedlings, and potted experiments, underscoring their significant potential as biocontrol agents for the effective management of PCS.
Collapse
Affiliation(s)
- Shihe Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Cheligeer Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Jian Wu
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Simiao Liu
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Utpal Handique
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
4
|
Liu Y, Wang J, Zhao R, Liu X, Dong Y, Shi W, Jiang H, Guan X. Bacterial isolation and genome analysis of a novel Klebsiella quasipneumoniae phage in southwest China's karst area. Virol J 2024; 21:56. [PMID: 38448926 PMCID: PMC10916049 DOI: 10.1186/s12985-024-02321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Southwest China is one of the largest karst regions in the world. Karst environment is relatively fragile and vulnerable to human activities. Due to the discharge of sewage and domestic garbage, the karst system may be polluted by pathogenic bacteria. The detection of bacterial distribution and identification of phage capable of infecting them is an important approach for environmental assessment and resource acquisition. METHODS Bacteria and phages were isolated from karst water in southwest China using the plate scribing and double plate method, respectively. Isolated phage was defined by transmission electron microscopy, one-step growth curve and optimal multiplicity of infection (MOI). Genomic sequencing, phylogenetic analysis, comparative genomic and proteomic analysis were performed. RESULTS A Klebsiella quasipneumoniae phage was isolated from 32 isolates and named KL01. KL01 is morphologically identified as Caudoviricetes with an optimal MOI of 0.1, an incubation period of 10 min, and a lysis period of 60 min. The genome length of KL01 is about 45 kb, the GC content is 42.5%, and it contains 59 open reading frames. The highest average nucleotide similarity between KL01 and a known Klebsiella phage 6939 was 83.04%. CONCLUSIONS KL01 is a novel phage, belonging to the Autophagoviridae, which has strong lytic ability. This study indicates that there were not only some potential potentially pathogenic bacteria in the karst environment, but also phage resources for exploration and application.
Collapse
Affiliation(s)
- Yanju Liu
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Ruoyu Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Xiaoping Liu
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Yang Dong
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Wenyu Shi
- College of Food Science & Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Hongchen Jiang
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| |
Collapse
|
5
|
Behera M, Singh G, Vats A, Parmanand, Roshan M, Gautam D, Rana C, Kesharwani RK, De S, Ghorai SM. Expression and characterization of novel chimeric endolysin CHAPk-SH3bk against biofilm-forming methicillin-resistant Staphylococcus aureus. Int J Biol Macromol 2024; 254:127969. [PMID: 37944719 DOI: 10.1016/j.ijbiomac.2023.127969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The continuous evolution of antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) due to the misuse of antibiotics lays out the need for the development of new antimicrobials with higher activity and lower resistance. In this study, we have expressed novel chimeric endolysin CHAPk-SH3bk derived from LysK to investigate its antibacterial activity against planktonic and biofilm-forming MRSA. The molecular docking and MD simulation results identified critical amino acids (ASP47, ASP56, ARG71, and Gly74) of CHAPk domain responsible for its catalytic activity. Chimeric endolysin CHAPk-SH3bk showed an effective binding to peptidoglycan fragment using 14 hydrogen bonds. The in-vitro antibacterial assays displayed higher activity of CHAPk against planktonic MRSA with 2-log10 reduction in 2 h. Both CHAPk and CHAPk-SH3bk displayed bactericidal activity against MRSA with ∼4log10 and ∼3.5log10 reduction in 24 h. Biofilm reduction activity displayed CHAPk-SH3bk reduced 33 % and 60 % of hospital-associated ATCC®BAA-44™ and bovine origin SA1 respectively. The CHAPk treatment reduced 47 % of the preformed biofilm formed by bovine-origin MRSA SA1. This study indicates an effective reduction of preformed MRSA biofilms of human and animal origin using novel chimeric construct CHAPk-SH3bk. Stating that the combination and shuffling of different domains of phage endolysin potentially increase its bacteriolytic effectiveness against MRSA.
Collapse
Affiliation(s)
- Manisha Behera
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India; National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India; Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Ashutosh Vats
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Parmanand
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Mayank Roshan
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devika Gautam
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Chanchal Rana
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Rajesh Kumar Kesharwani
- Department of Computer Application, Nehru Gram Bharati (Deemed to be University), Prayagraj, India
| | - Sachinandan De
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India.
| | - Soma M Ghorai
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India.
| |
Collapse
|
6
|
Lopez MES, Gontijo MTP, Cardoso RR, Batalha LS, Eller MR, Bazzolli DMS, Vidigal PMP, Mendonça RCS. Complete genome analysis of Tequatrovirus ufvareg1, a Tequatrovirus species inhibiting Escherichia coli O157:H7. Front Cell Infect Microbiol 2023; 13:1178248. [PMID: 37274318 PMCID: PMC10236363 DOI: 10.3389/fcimb.2023.1178248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Bacteriophages infecting human pathogens have been considered potential biocontrol agents, and studying their genetic content is essential to their safe use in the food industry. Tequatrovirus ufvareg1 is a bacteriophage named UFV-AREG1, isolated from cowshed wastewater and previously tested for its ability to inhibit Escherichia coli O157:H7. Methods T. ufvareg1 was previously isolated using E. coli O157:H7 (ATCC 43895) as a bacterial host. The same strain was used for bacteriophage propagation and the one-step growth curve. The genome of the T. ufvareg1 was sequenced using 305 Illumina HiSeq, and the genome comparison was calculated by VIRIDIC and VIPTree. Results Here, we characterize its genome and compare it to other Tequatrovirus. T. ufvareg1 virions have an icosahedral head (114 x 86 nm) and a contracted tail (117 x 23 nm), with a latent period of 25 min, and an average burst size was 18 phage particles per infected E. coli cell. The genome of the bacteriophage T. ufvareg1 contains 268 coding DNA sequences (CDS) and ten tRNA genes distributed in both negative and positive strains. T. ufvareg1 genome also contains 40 promoters on its regulatory regions and two rho-independent terminators. T. ufvareg1 shares an average intergenomic similarity (VIRIDC) of 88.77% and an average genomic similarity score (VipTree) of 88.91% with eight four reference genomes for Tequatrovirus available in the NCBI RefSeq database. The pan-genomic analysis confirmed the high conservation of Tequatrovirus genomes. Among all CDS annotated in the T. ufvareg1 genome, there are 123 core genes, 38 softcore genes, 94 shell genes, and 13 cloud genes. None of 268 CDS was classified as being exclusive of T. ufvareg1. Conclusion The results in this paper, combined with other previously published findings, indicate that T. ufvareg1 bacteriophage is a potential candidate for food protection against E. coli O157:H7 in foods.
Collapse
Affiliation(s)
- Maryoris Elisa Soto Lopez
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Ingeniería de Alimentos, Universidad de Córdoba, Montería, Colombia
| | - Marco Tulio Pardini Gontijo
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, NC, United States
| | - Rodrigo Rezende Cardoso
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Laís Silva Batalha
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Monique Renon Eller
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
7
|
Deng H, Li M, Zhang Q, Gao C, Song Z, Chen C, Wang Z, Feng X. The Broad-Spectrum Endolysin LySP2 Improves Chick Survival after Salmonella Pullorum Infection. Viruses 2023; 15:v15040836. [PMID: 37112818 PMCID: PMC10142873 DOI: 10.3390/v15040836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Salmonella pullorum causes typical “Bacillary White Diarrhea” and loss of appetite in chicks, which leads to the death of chicks in severe cases; thus, it is still a critical issue in China. Antibiotics are conventional medicines used for Salmonella infections; however, due to the extensive long-term use and even abuse of antibiotics, drug resistance becomes increasingly severe, making treating pullorum disease more difficult. Most of the endolysins are hydrolytic enzymes produced by bacteriophages to cleave the host’s cell wall during the final stage of the lytic cycle. A virulent bacteriophage, YSP2, of Salmonella was isolated in a previous study. A Pichia pastoris expression strain that can express the Salmonella bacteriophage endolysin was constructed efficiently, and the Gram-negative bacteriophage endolysin, LySP2, was obtained in this study. Compared with the parental phage YSP2, which can only lyse Salmonella, LySP2 can lyse Salmonella and Escherichia. The survival rate of Salmonella-infected chicks treated with LySP2 can reach up to 70% and reduce Salmonella abundance in the liver and intestine. The treatment group showed that LySP2 significantly improved the health of infected chicks and alleviated organ damage caused by Salmonella infection. In this study, the Salmonella bacteriophage endolysin was expressed efficiently by Pichia pastoris, and the endolysin LySP2 showed good potential for the treatment of pullorum disease caused by Salmonella pullorum.
Collapse
Affiliation(s)
- Hewen Deng
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Mengjiao Li
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Qiuyang Zhang
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Chencheng Gao
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Zhanyun Song
- Changchun Customs District, Changchun 130000, China
| | - Chunhua Chen
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Zhuo Wang
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Xi’an Street 5333#, Changchun 130062, China
- Correspondence: ; Tel.: +86-135-0430-0193
| |
Collapse
|
8
|
Cuozzo S, de Moreno de LeBlanc A, LeBlanc J, Hoffmann N, Tortella G. Streptomyces genus as a source of probiotics and its potential for its use in health. Microbiol Res 2023; 266:127248. [DOI: 10.1016/j.micres.2022.127248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/10/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
9
|
Shymialevich D, Wójcicki M, Wardaszka A, Świder O, Sokołowska B, Błażejak S. Application of Lytic Bacteriophages and Their Enzymes to Reduce Saprophytic Bacteria Isolated from Minimally Processed Plant-Based Food Products-In Vitro Studies. Viruses 2022; 15:9. [PMID: 36680050 PMCID: PMC9865725 DOI: 10.3390/v15010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to isolate phage enzymes and apply them in vitro for eradication of the dominant saprophytic bacteria isolated from minimally processed food. Four bacteriophages-two Enterobacter-specific and two Serratia-specific, which produce lytic enzymes-were used in this research. Two methods of phage enzyme isolation were tested, namely precipitation with acetone and ultracentrifugation. It was found that the number of virions could be increased almost 100 times due to the extension of the cultivation time (72 h). The amplification of phage particles and lytic proteins was dependent on the time of cultivation. Considering the influence of isolated enzymes on the growth kinetics of bacterial hosts, proteins isolated with acetone after 72-hour phage propagation exhibited the highest inhibitory effect. The reduction of bacteria count was dependent on the concentration of enzymes in the lysates. The obtained results indicate that phages and their lytic enzymes could be used in further research aiming at the improvement of microbiological quality and safety of minimally processed food products.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS–SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland
| |
Collapse
|
10
|
Abeysekera GS, Love MJ, Manners SH, Billington C, Dobson RCJ. Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications. Front Microbiol 2022; 13:1044143. [PMID: 36345304 PMCID: PMC9636201 DOI: 10.3389/fmicb.2022.1044143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 09/09/2023] Open
Abstract
Holins and spanins are bacteriophage-encoded membrane proteins that control bacterial cell lysis in the final stage of the bacteriophage reproductive cycle. Due to their efficient mechanisms for lethal membrane disruption, these proteins are gaining interest in many fields, including the medical, food, biotechnological, and pharmaceutical fields. However, investigating these lethal proteins is challenging due to their toxicity in bacterial expression systems and the resultant low protein yields have hindered their analysis compared to other cell lytic proteins. Therefore, the structural and dynamic properties of holins and spanins in their native environment are not well-understood. In this article we describe recent advances in the classification, purification, and analysis of holin and spanin proteins, which are beginning to overcome the technical barriers to understanding these lethal membrane disrupting proteins, and through this, unlock many potential biotechnological applications.
Collapse
Affiliation(s)
- Gayan S. Abeysekera
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael J. Love
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Sarah H. Manners
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Craig Billington
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Getting Outside the Cell: Versatile Holin Strategies Used by Distinct Phages to Leave Their Bacillus thuringiensis Host. J Virol 2022; 96:e0069622. [PMID: 35758660 PMCID: PMC9327680 DOI: 10.1128/jvi.00696-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Holins are small transmembrane proteins involved in the final stage of the lytic cycle of double-stranded DNA (dsDNA) phages. They cooperate with endolysins to achieve bacterial lysis, thereby releasing the phage progeny into the extracellular environment. Besides their role as membrane permeabilizers, allowing endolysin transfer and/or activation, holins also regulate the lysis timing. In this work, we provide functional characterization of the holins encoded by three phages targeting the Bacillus cereus group. The siphovirus Deep-Purple has a lysis cassette in which holP30 and holP33 encode two proteins displaying holin properties, including a transmembrane domain. The holin genes were expressed in Escherichia coli and induced bacterial lysis, with HolP30 being more toxic than HolP33. In Bacillus thuringiensis, the simultaneous expression of both holins was necessary to observe lysis, suggesting that they may interact to form functional pores. The myoviruses Deep-Blue and Vp4 both encode a single candidate holin (HolB and HolV, respectively) with two transmembrane domains, whose genes are not located near the endolysin genes. Their function as holin proteins was confirmed as their expression in E. coli impaired cell growth and viability. The HolV expression in B. thuringiensis also led to bacterial lysis, which was enhanced by coexpressing the holin with its cognate endolysin. Despite similar organizations and predicted topologies, truncated mutants of the HolB and HolV proteins showed different toxicity levels, suggesting that differences in amino acid composition influence their lysis properties. IMPORTANCE The phage life cycle ends with the host cell lysis, thereby releasing new virions into the environment for the next round of bacterial infection. Nowadays, there is renewed interest in phages as biocontrol agents, primarily due to their ability to cause bacterial death through lysis. While endolysins, which mediate peptidoglycan degradation, have been fairly well described, the pore-forming proteins, referred to as holins, have been extensively characterized in only a few model phages, mainly infecting Gram-negative bacteria. In this work, we characterized the holins encoded by a siphovirus and two myoviruses targeting members of the Gram-positive Bacillus cereus group, which comprises closely related species, including the well-known Bacillus anthracis, B. cereus sensu stricto, and Bacillus thuringiensis. Overall, this paper provides the first experimental characterization of holins encoded by B. cereus phages and reveals versatile lysis mechanisms used by these phages.
Collapse
|
12
|
Meng LH, Ke F, Zhang QY, Zhao Z. Functional Analysis of the Endopeptidase and Holin From Planktothrix agardhii Cyanophage PaV-LD. Front Microbiol 2022; 13:849492. [PMID: 35572663 PMCID: PMC9096620 DOI: 10.3389/fmicb.2022.849492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
A cyanophage PaV-LD, previously isolated from harmful filamentous cyanobacterium Planktothrix agardhii, was sequenced, and co-expression of its two ORFs in tandem, ORF123 and ORF124, inhibited growth on the model cyanobacterium Synechocystis sp. PCC6803 cells. However, the mechanism of action of ORF123 and ORF124 alone remains to be elucidated. In this study, we aimed to study the individual function of ORF123 or ORF124 from PaV-LD. Our data showed that the ORF123 encoded an endopeptidase, which harbored an M23 family peptidase domain and a transmembrane region. The expression of the endopeptidase in Escherichia coli alone revealed that the protein exhibited remarkable bacteriostatic activity, as evidenced by observation of growth inhibition, membrane damage, and leakage of the intracellular enzyme. Similarly, the holin, a membrane-associated protein encoded by the ORF124, showed weak bacteriostatic activity on E. coli. Moreover, deletion mutations indicated that the transmembrane domains of endopeptidase and holin were indispensable for their bacteriostatic activity. Meanwhile, the bacteriostatic functions of endopeptidase and holin on cyanobacteria cells were confirmed by expressing them in the cyanobacterium Synechocystis sp. PCC6803. Collectively, our study revealed the individual role of endopeptidase or holin and their synergistic bacteriolytic effect, which would contribute to a better understanding of the lytic mechanism of cyanophage PaV-LD.
Collapse
Affiliation(s)
- Li-Hui Meng
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
13
|
Kim J, Kim JC, Ahn J. Assessment of bacteriophage-encoded endolysin as a potent antimicrobial agent against antibiotic-resistant Salmonella Typhimurium. Microb Pathog 2022; 168:105576. [PMID: 35561980 DOI: 10.1016/j.micpath.2022.105576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
This study was designed to evaluate the potential of using newly purified Salmonella phage-encoded endolysin LysPB32 as novel antibiotic alternative. The endolysin LysPB32 was characterized by analyzing pH and thermal stability, lytic spectrum, antimicrobial activity, and mutant frequency against Salmonella Typhimurium KCCM 40253 (STKCCM), S. Typhimurium ATCC 19585 (STATCC), S. Typhimurium CCARM 8009 (STCCARM), Klebsiella pneumoniae ATCC 23357 (KPATCC), K. pneumoniae CCARM 10237 (KPCCARM), Pseudomonas aeruginosa ATCC 27853 (PAATCC), Listeria monocytogenes ATCC 1911 (LMATCC), Staphylococcus aureus ATCC 25923 (SAATCC), and S. aureus CCARM 3080 (SACCARM). The molecular weight of LysPB32 is 17 kDa that was classified as N-acetyl-β-d-muramidase. The optimum activity of LysPB32 against the outer membrane (OM) permeabilized STKCCM, STATCC, and STCCARM was observed at 37 °C and pH 6.5. LysPB32 had a broad spectrum of muralytic activity against antibiotic-sensitive STKCCM (41 mOD/min), STATCC (32 mOD/min), and SBKACC (25 mOD/min) and antibiotic-resistant STCCARM (35 mOD/min) and KPCCARM (31 mOD/min). The minimum inhibitory concentrations (MICs) of polymyxin B against STKCCM, STCCARM, and STATCC were decreased by 4-, 4-, and 8-folds, respectively, when treated with LysPB32. The combination of LysPB32 and polymyxin B effectively inhibited the growth of STKCCM, STCCARM, and STATCC after 24 h of incubation at 37 °C, showing 4.9-, 4.4-, and 3.3-log reductions, respectively. The mutant frequency was low in STKCCM, STCCARM, and STATCC treated with combination of LysPB32-polymyxin B system. The results suggest the LysPB32-polymyxin system can be a potential candidate for alternative therapeutic agent to control antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
14
|
Temporal Transcriptional Responses of a Vibrio alginolyticus Strain to
Podoviridae
Phage HH109 Revealed by RNA-Seq. mSystems 2022; 7:e0010622. [PMID: 35400200 PMCID: PMC9040624 DOI: 10.1128/msystems.00106-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio alginolyticus
is a common opportunistic pathogen that causes mass mortality in cultured marine animals. Phage HH109 lyses pathogenic
V. alginolyticus
strain E110 with high efficiency and thus serves as a useful model to understand the dynamic interplay of a phage and its host.
Collapse
|
15
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
16
|
Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, Li Y, Zhang B, Chen W, Wang S. Endolysin, a Promising Solution against Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:1277. [PMID: 34827215 PMCID: PMC8614784 DOI: 10.3390/antibiotics10111277] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global crisis for human public health which threatens the effective prevention and control of ever-increasing infectious diseases. The advent of pandrug-resistant bacteria makes most, if not all, available antibiotics invalid. Meanwhile, the pipeline of novel antibiotics development stagnates, which prompts scientists and pharmacists to develop unconventional antimicrobials. Bacteriophage-derived endolysins are cell wall hydrolases which could hydrolyze the peptidoglycan layer from within and outside of bacterial pathogens. With high specificity, rapid action, high efficiency, and low risk of resistance development, endolysins are believed to be among the best alternative therapeutic agents to treat multidrug resistant (MDR) bacteria. As of now, endolysins have been applied to diverse aspects. In this review, we comprehensively introduce the structures and activities of endolysins and summarize the latest application progress of recombinant endolysins in the fields of medical treatment, pathogen diagnosis, food safety, and agriculture.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Weixiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Chao Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yuanrui Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Bailing Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| |
Collapse
|
17
|
Jaroszewicz W, Bielańska P, Lubomska D, Kosznik-Kwaśnicka K, Golec P, Grabowski Ł, Wieczerzak E, Dróżdż W, Gaffke L, Pierzynowska K, Węgrzyn G, Węgrzyn A. Antibacterial, Antifungal and Anticancer Activities of Compounds Produced by Newly Isolated Streptomyces Strains from the Szczelina Chochołowska Cave (Tatra Mountains, Poland). Antibiotics (Basel) 2021; 10:antibiotics10101212. [PMID: 34680793 PMCID: PMC8532742 DOI: 10.3390/antibiotics10101212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/21/2022] Open
Abstract
Resistance of bacteria, fungi and cancer cells to antibiotics and other drugs is recognized as one of the major problems in current medicine. Therefore, a search for new biologically active compounds able to either kill pathogenic cells or inhibit their growth is mandatory. Hard-to-reach habitats appear to be unexplored sources of microorganisms producing previously unknown antibiotics and other molecules revealing potentially therapeutic properties. Caves belong to such habitats, and Actinobacteria are a predominant group of microorganisms occurring there. This group of bacteria are known for production of many antibiotics and other bioactive compounds. Interestingly, it was demonstrated previously that infection with bacteriophages might enhance production of antibiotics by them. Here, we describe a series of newly isolated strains of Actinobacteria that were found in caves from the Tatra Mountains (Poland). Phage induction tests indicated that some of them may bear active prophages able to produce virions upon treatment with mitomycin C or UV irradiation. Among all the examined bacteria, two newly isolated Streptomyces sp. strains were further characterized to demonstrate their ability to inhibit the growth of pathogenic bacteria (strains of Staphylococcus aureus, Salmonella enterica, Enterococcus sp., Escherichia coli, and Pseudomonas aeruginosa) and fungi (different species and strains from the genus Candida). Moreover, extracts from these Streptomyces strains reduced viability of the breast-cancer cell line T47D. Chemical analyses of these extracts indicated the presence of isomers of dichloranthrabenzoxocinone and 4,10- or 10,12-dichloro-3-O-methylanthrabenzoxocinone, which are putative antimicrobial compounds. Moreover, various previously unknown (unclassified) molecules were also detected using liquid chromatography-mass spectrometry, suggesting that tested Streptomyces strains may synthesize a battery of bioactive compounds with antibacterial, antifungal, and anticancer activities. These results indicate that further studies on the newly isolated Actinobacteria might be a promising approach to develop novel antibacterial, antifungal, and/or anticancer drugs.
Collapse
Affiliation(s)
- Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Patrycja Bielańska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Daria Lubomska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Weronika Dróżdż
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
- Correspondence: ; Tel.: +48-58-523-6024
| |
Collapse
|
18
|
Li X, Zhang C, Wei F, Yu F, Zhao Z. Bactericidal activity of a holin-endolysin system derived from Vibrio alginolyticus phage HH109. Microb Pathog 2021; 159:105135. [PMID: 34390766 DOI: 10.1016/j.micpath.2021.105135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Vibrio alginolyticus is a common opportunistic pathogen that can cause vibriosis of marine aquatic animals. The application of phages or particularly associated protein products for the treatment of vibriosis has shown prominent advantages compared with the treatment with traditional antibiotics. In this study, the function of a holin-endolysin system from V. alginolyticus phage HH109 was characterized by examining the effect of their overexpression on Escherichia coli and V. alginolyticus. Our data revealed that the endolysin of the phage HH109 has stronger bactericidal activity than the holin, as evidenced by observing more cell death and severe structural damage of cells in the endolysin-expressing E. coli. Furthermore, the two proteins displayed the synergistic effect when the holA and lysin were co-expressed in E. coli, although no interaction between them was detected using the bacterial two-hybrid assay. Transmission electron microscopy observation revealed disruptions of cell envelopes accompanied by leakage of intracellular contents. Similarly, the bactericidal activity of the holin and endolysin against V. alginolyticus was also examined whatever the host is sensitive or resistant to phage HH109. Together, our study contributes to a better understanding of the mechanism of phage HH109 destroying the bacterial cell wall to lyse their host and may offer alternative applications potentially for vibriosis treatment.
Collapse
Affiliation(s)
- Xixi Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Ce Zhang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fucheng Wei
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fei Yu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Basit A, Qadir S, Qureshi S, Rehman SU. Cloning and expression analysis of fused holin-endolysin from RL bacteriophage; Exhibits broad activity against multi drug resistant pathogens. Enzyme Microb Technol 2021; 149:109846. [PMID: 34311883 DOI: 10.1016/j.enzmictec.2021.109846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/20/2023]
Abstract
Antibiotic resistance has become a major risk to community health over last few years because of antibiotics overuse around the globe and lack of new antibiotics development. Phages and their lytic enzymes are considered as an effective alternative of antibiotics to control drug resistant bacterial pathogens. Endolysins prove to be a promising class of antibacterials due to their specificity and less chances of resistance development in bacterial pathogens. Though large number of endolysins has been reported against gram positive bacteria, very few reported against gram negative bacteria due to the presence of outer membrane, which acts as physical barrier against endolysin attack to peptidoglycan. In the current study, we have expressed endolysin (RL_Lys) and holin fused at the N terminus of endolysin (RL_Hlys) from RL phage infecting multi drug resistant (MDR) Pseudomonas aeruginosa. Both endolysin variants were found active against wide range of MDR strains P. aeruginosa, Klebsella pneumonia, Salmonella Sp. and Methicillin Resistant Staphylococcus aureus (MRSA). Broth reduction assay showed that RL_Hlys is more active than RL_Lys due to presence of holin, which assist the endolysin access towards cell wall. The protein ligand docking and molecular dynamic simulation results showed that C- terminus region of endolysin play vital role in cell wall binding and even in the absence of holin, hydrolyze a broad range of gram negative bacterial pathogens. The significant activity of RL-Lys and RL_Hlys against a broad range of MDR gram negative and positive bacterial pathogens makes them good candidates for antibiotic alternatives.
Collapse
Affiliation(s)
- Abdul Basit
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Sania Qadir
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Sara Qureshi
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Shafiq Ur Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
20
|
Zha J, Liu Z, Sun R, Gong G, Dordick JS, Wu X. Endolysin-Based Autolytic E. coli System for Facile Recovery of Recombinant Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3134-3143. [PMID: 33656890 DOI: 10.1021/acs.jafc.1c00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recovery of recombinant proteins from the Escherichia coli cytoplasm depends on cell disruption by mechanical, chemical, and/or enzymatic methods, which usually cause incomplete cell breakage or protein denaturation. Controllable autolytic E. coli strains have been designed to facilitate the purification of recombinant proteins; however, these strains suffer from low recovery yield, slow cell lysis, or extensive strain engineering. Herein, we report an improved, highly efficient programmable autolytic E. coli platform, in which cell lysis is initiated upon the induced expression of T4 lysozyme with N-terminal fusion of a cell-penetrating peptide. Through the engineering of the peptide sequence and copy number, and by incorporating the fusion lytic gene into the E. coli genome, more than 99.97% of cells could be lysed within 30 min of induction regardless of cell age. We further tested the expression and release of a recombinant enzyme lysostaphin (Lst) and demonstrated that 4 h induction of the lytic gene after 3 h of Lst expression resulted in 98.97% cell lysis. Lst obtained from this system had the same yield, yet 1.63-fold higher activity, compared with that obtained from cells lysed by freeze-thawing and sonication. This autolytic platform shows potential for use in large-scale microbial production of proteins and other biopolymers.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhiqiang Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Runcong Sun
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
21
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
22
|
Oh HK, Hwang YJ, Hong HW, Myung H. Comparison of Enterococcus faecalis Biofilm Removal Efficiency among Bacteriophage PBEF129, Its Endolysin, and Cefotaxime. Viruses 2021; 13:v13030426. [PMID: 33800040 PMCID: PMC7999683 DOI: 10.3390/v13030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive pathogen which colonizes human intestinal surfaces, forming biofilms, and demonstrates a high resistance to many antibiotics. Especially, antibiotics are less effective for eradicating biofilms and better alternatives are needed. In this study, we have isolated and characterized a bacteriophage, PBEF129, infecting E. faecalis. PBEF129 infected a variety of strains of E. faecalis, including those exhibiting antibiotic resistance. Its genome is a linear double-stranded DNA, 144,230 base pairs in length. Its GC content is 35.9%. The closest genomic DNA sequence was found in Enterococcus phage vB_EfaM_Ef2.3, with a sequence identity of 99.06% over 95% query coverage. Furthermore, 75 open reading frames (ORFs) were functionally annotated and five tRNA-encoding genes were found. ORF 6 was annotated as a phage endolysin having an L-acetylmuramoyl-l-alanine amidase activity. We purified the enzyme as a recombinant protein and confirmed its enzymatic activity. The endolysin’s host range was observed to be wider than its parent phage PBEF129. When applied to bacterial biofilm on the surface of in vitro cultured human intestinal cells, it demonstrated a removal efficacy of the same degree as cefotaxime, but much lower than its parent bacteriophage.
Collapse
Affiliation(s)
- Hyun Keun Oh
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyung-Gi Do 17035, Korea; (H.K.O.); (Y.J.H.)
| | - Yoon Jung Hwang
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyung-Gi Do 17035, Korea; (H.K.O.); (Y.J.H.)
| | | | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyung-Gi Do 17035, Korea; (H.K.O.); (Y.J.H.)
- LyseNTech Co. Ltd., Gyung-Gi Do 17035, Korea;
- Bacteriophage Bank of Korea, Yong-In, Mo-Hyun, Gyung-Gi Do 17035, Korea
- Correspondence:
| |
Collapse
|
23
|
Jiang L, Zheng R, Sun Q, Li C. Isolation, characterization, and application of Salmonella paratyphi phage KM16 against Salmonella paratyphi biofilm. BIOFOULING 2021; 37:276-288. [PMID: 33947280 DOI: 10.1080/08927014.2021.1900130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/20/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Salmonella biofilm prevention and control is of great importance. This study, investigated the use of the isolated phage KM16 belonging to the family Myoviridae in the order Caudovirales. The phage genome size was 170,126 bp. Almost all phages were adsorbed to the host within 20 min. KM16 had a latent period of 70 min followed by a rise period of 40 min. Phage KM16 had the ability to lytically infect 10 out of the 12 clinical strains of S. paratyphi tested. Phylogenetic analysis indicated that the S. paratyphi 16S rRNA, crispr 1 and fimA genes correlated with the lytic spectrum of phage KM16. The lytic spectrum of phage KM16 correlated with Salmonella pili (fimA), and Salmonella pili were the recognition site for phage adsorption to the host. Phage KM16 (MOI = 0.1) had a better anti-biofilm effect than kanamycin sulfate (10 ug ml-1) in high-concentration Salmonella cultures.
Collapse
Affiliation(s)
- Liming Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, PR China
| | - Rui Zheng
- Department of Clinical laboratory, The First People's Hospital of Yunnan Province, Kunming, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
24
|
Ahammad T, Drew DL, Sahu ID, Khan RH, Butcher BJ, Serafin RA, Galende AP, McCarrick RM, Lorigan GA. Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S 21 Using DEER Spectroscopy. J Phys Chem B 2020; 124:11396-11405. [PMID: 33289567 DOI: 10.1021/acs.jpcb.0c09081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteriophages have evolved with an efficient host cell lysis mechanism to terminate the infection cycle and release the new progeny virions at the optimum time, allowing adaptation with the changing host and environment. Among the lytic proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time known as "holin triggering". Pinholin S21 is a prototype holin of phage Φ21 which makes many nanoscale holes and destroys the proton motive force, which in turn activates the signal anchor release (SAR) endolysin system to degrade the peptidoglycan layer of the host cell and destruction of the outer membrane by the spanin complex. Like many others, phage Φ21 has two holin proteins: active pinholin and antipinholin. The antipinholin form differs only by three extra amino acids at the N-terminus; however, it has a different structural topology and conformation with respect to the membrane. Predefined combinations of active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously, the dynamics and topology of active pinholin and antipinholin were investigated (Ahammad et al. JPCB 2019, 2020) using continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. However, detailed structural studies and direct comparison of these two forms of pinholin S21 are absent in the literature. In this study, the structural topology and conformations of active pinholin (S2168) and inactive antipinholin (S2168IRS) in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) proteoliposomes were investigated using the four-pulse double electron-electron resonance (DEER) EPR spectroscopic technique to measure distances between transmembrane domains 1 and 2 (TMD1 and TMD2). Five sets of interlabel distances were measured via DEER spectroscopy for both the active and inactive forms of pinholin S21. Structural models of the active pinholin and inactive antipinholin forms in DMPC proteoliposomes were obtained using the experimental DEER distances coupled with the simulated annealing software package Xplor-NIH. TMD2 of S2168 remains in the lipid bilayer, and TMD1 is partially externalized from the bilayer with some residues located on the surface. However, both TMDs remain incorporated in the lipid bilayer for the inactive S2168IRS form. This study demonstrates, for the first time, clear structural topology and conformational differences between the two forms of pinholin S21. This work will pave the way for further studies of other holin systems using the DEER spectroscopic technique and will give structural insight into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brandon J Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alberto P Galende
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
25
|
Tham HY, Song AAL, Yusoff K, Tan GH. Effect of different cloning strategies in pET-28a on solubility and functionality of a staphylococcal phage endolysin. Biotechniques 2020; 69:161-170. [PMID: 32787565 DOI: 10.2144/btn-2020-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Endolysins have been studied intensively as an alternative to antibiotics. In this study, endolysin derived from a phage which infects methicillin-resistant Staphylococcus aureus (MRSA) was cloned and expressed in Escherichia coli pET28a. Initially, the endolysin was cloned using BamHI/XhoI, resulting in expression of a recombinant endolysin which was expressed in inclusion bodies. While solubilization was successful, the protein remained nonfunctional. Recloning the endolysin using NcoI/XhoI resulted in expression of soluble and functional proteins at 18°C. The endolysin was able to form halo zones on MRSA plates and showed a reduction in turbidity of MRSA growth. Therefore, cloning strategies should be chosen carefully even in an established expression system as they could greatly affect the functionality of the expressed protein.
Collapse
Affiliation(s)
- Hong Y Tham
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Adelene A-L Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Geok H Tan
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Wintachai P, Naknaen A, Thammaphet J, Pomwised R, Phaonakrop N, Roytrakul S, Smith DR. Characterization of extended-spectrum-β-lactamase producing Klebsiella pneumoniae phage KP1801 and evaluation of therapeutic efficacy in vitro and in vivo. Sci Rep 2020; 10:11803. [PMID: 32678251 PMCID: PMC7367294 DOI: 10.1038/s41598-020-68702-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Extended spectrum β lactamase-producing Klebsiella pneumoniae (ESBL-KP) is being reported with high morbidity and mortality rates and is considered as the highest priority for new antimicrobial strategies. To develop an alternative antimicrobial agent, phage KP1801 with broad lytic activity was isolated. The genome of phage KP1801 was double stranded DNA of 49,835 base pairs, with a GC content of 50.26%. There were 75 putative open reading frames. Phage KP1801 was classified as being in the order Caudovirales, belonging to the Siphoviridae family. About 323 proteins were detected by shotgun proteome analysis. The phage inhibited biofilm formation and reduced pre-formed biofilm in a dose dependent manner. Scanning electron microscopic studies demonstrated a membrane damage of bacterial cells treated with phage, resulting in cell death. Prophylactic and therapeutic efficacies of the phage were evaluated in Galleria mellonella. Administration of ESBL-KP infection with phage significantly improved the survival of G. mellonella. The number of intracellular bacteria in larvae showed a significant decrease compared with untreated control while the number of phage increased. These studies suggested that phage KP1801 has the potential for development as an alternative for antibiotics and biocontrol agents against ESBL-KP infection.
Collapse
Affiliation(s)
| | - Ampapan Naknaen
- Department of Microbiology, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Jirapath Thammaphet
- School of Science, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Rattanaruji Pomwised
- Department of Microbiology, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, 73170, Thailand
| |
Collapse
|
27
|
Ding Y, Zhang Y, Huang C, Wang J, Wang X. An Endolysin LysSE24 by Bacteriophage LPSE1 Confers Specific Bactericidal Activity against Multidrug-Resistant Salmonella Strains. Microorganisms 2020; 8:E737. [PMID: 32429030 PMCID: PMC7284969 DOI: 10.3390/microorganisms8050737] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Salmonella is responsible for a wide range of infections and is a constant threat to public health, particularly in light of emerging antibiotic resistance. The use of bacteriophages and phage endolysins as specific antibacterial agents is a promising strategy to control this bacterial infection. Endolysins are important proteins during the process of bacteria lysis by bacteriophages. In this study, we identify a novel endolysin, named LysSE24. LysSE24 was predicted to possess N-acetylmuramidases activity, with a molecular mass of ca. 17.4 kDa and pI 9.44. His-tagged LysSE24 was heterologously expressed and purified by Ni-NTA chromatography. LysSE24 exhibited optimal bactericidal activity against Salmonella Enteritidis ATCC 13076 at a concentration of 0.1 μM. Salmonella population (measured by OD600 nm) decreased significantly (p < 0.05) after 10 min of incubation in combination with the outer membrane permeabilizer in vitro. It also showed antibacterial activity against a panel of 23 tested multidrug-resistant Salmonella strains. Bactericidal activity of LysSE24 was evaluated in terms of pH, temperature, and ionic strength. It was very stable with different pH (4.0 to 10.0) at different temperatures (20 to 60 °C). Both K+ and Na+ at concentrations between 0.1 to 100 mM showed no effects on its bactericidal activity, while a high concentration of Ca2+ and Mg2+ showed efficacy. Transmission electron microscopy revealed that exposure to 0.1 μM LysSE24 for up to 5 min caused a remarkable modification of the cell shape of Salmonella Enteritidis ATCC 13076. These results indicate that recombinant LysSE24 represents a promising antimicrobial activity against Salmonella, especially several multidrug-resistant Salmonella strains. Further studies can be developed to improve its bactericidal activity without the need for pretreatment with outer membrane-destabilizing agents by synthetic biology methods.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| |
Collapse
|