1
|
Ma H, Mueed A, Ma Y, Ibrahim M, Su L, Wang Q. Fecal Microbiota Transplantation Activity of Floccularia luteovirens Polysaccharides and Their Protective Effect on Cyclophosphamide-Induced Immunosuppression and Intestinal Injury in Mice. Foods 2024; 13:3881. [PMID: 39682952 DOI: 10.3390/foods13233881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Floccularia luteovirens polysaccharides (FLP1s) have potential biological activities. Our previous study showed that FLP1s positively regulated gut immunity and microbiota. However, it is still unclear whether FLP1s mediate gut microbiota in immunosuppressed mice. This research aims to explore the relationship between FLP1-mediated gut microbes and intestinal immunity in immunosuppressed mice through fecal microbiota transplantation (FMT). The results demonstrated that FLP1s exhibited prebiotic and anti-immunosuppressive effects on CTX-induced immunosuppressed mice. FFLP1 treatment (microbiota transplantation from the fecal sample) remarkably elevated the production of sIgA and secretion of the anti-inflammatory cytokines IL-4, TNF-α, and IFN-γ in the intestine of CTX-treated mice, inducing activation of the MAPK pathway. Moreover, FFLP1s mitigated oxidative stress by activating the Nrf2/Keap1 signaling pathway and strengthened the intestinal barrier function by upregulating the expression level of tight junction proteins (occludin, claudin-1, MUC-2, and ZO-1). Furthermore, FFPL1s restored gut dysbiosis in CTX-treated immunosuppressed mice by increasing the abundance of Alloprevotella, Lachnospiraceae, and Bacteroides. They also modified the composition of fecal metabolites, leading to enhanced regulation of lipolysis in adipocytes, the cGMP-PKG pathway, the Rap1 signaling pathway, and ovarian steroidogenesis, as indicated by KEGG pathway analysis. These findings indicate that FLP1s could modulate the response of the intestinal immune system through regulation of the gut microbiota, thus promoting immune activation in CTX-treated immunosuppressed mice. FLP1s can serve as a natural protective agent against CTX-induced immune injury.
Collapse
Affiliation(s)
- He Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yanxu Ma
- Jilin Sericulture Science Research Institute, Changchun 130012, China
| | - Muhammad Ibrahim
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
2
|
Dong K, Wang J, Tang F, Liu Y, Gao L. A polysaccharide with a triple helix structure from Agaricus bisporus: Characterization and anti-colon cancer activity. Int J Biol Macromol 2024; 281:136521. [PMID: 39401631 DOI: 10.1016/j.ijbiomac.2024.136521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
In this study, A polysaccharide WAAP-2 (121 kDa) with a triple-helical structure was isolated and purified from Agaricus bisporus for the first time. The physicochemical properties, structural characteristics and anti-colon cancer activity were preliminarily investigated. The primary structure indicated that WAAP-2 was composed of mannose, glucose and galactose and determined the position of the linkage between monosaccharide residues. The advanced structure revealed that WAAP-2 has a triple helix and tangled chain conformation. In the anti-colon cancer activity investigation, WAAP-2 exerted an apoptosis-inducing effect by causing HT-29 cell cycle arrest in S phase. WAAP-2 promoted HT-29 cell apoptosis by up-regulating the expression of Caspase-3 and Bax proteins while down-regulating the expression of Bcl-2 protein. Besides, WAAP-2 could inhibit the migration and invasion of colorectal cancer cells by inducing E-cadherin expression and inhibiting Vimentin expression to affect epithelial mesenchymal transition. This paper is of importance for the application of WAAP-2, a triple-helical structural polysaccharide from Agaricus bisporus, to low-toxicity anti-colon cancer drugs.
Collapse
Affiliation(s)
- Kangzhen Dong
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Junhui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Fangyuan Tang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Li Gao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
3
|
Yang Y, Zhu X, Liu Y, Xu N, Ai X, Zhang H. Effects of diets rich in Agaricus bisporus polysaccharides on the growth, antioxidant, immunity, and resistance to Yersinia ruckeri in channel catfish. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108941. [PMID: 37463648 DOI: 10.1016/j.fsi.2023.108941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
To promote the application of Agaricus bisporus polysaccharides (ABPs) in channel catfish (Ictalurus punctatus) culture, we evaluated the effects of ABPs on the growth, immunity, antioxidant, and antibacterial activity of channel catfish. When the amount of ABPs was 250 mg/kg, channel catfish's weight gain and specific growth rates increased significantly while the feed coefficient decreased. We also found that adding ABPs in the feed effectively increased the activities of ACP, MDA, T-SOD, AKP, T-AOC, GSH, and CAT enzymes and immune-related genes such as IL-1β, Hsp70, and IgM in the head kidney of channel catfish. Besides, long-term addition will not cause pathological damage to the head kidney. When the amount of ABPs was over 125 mg/kg, the protection rate of channel catfish was more than 60%. According to the intestinal transcriptome analysis, the addition of ABPs promoted the expression of intestinal immunity genes and growth metabolism-related genes and enriched multiple related KEEG pathways. When challenged by Yersinia ruckeri infection, the immune response of channel catfish fed with ABPs was intenser and quicker. Additionally, the 16S rRNA gene sequencing analysis showed that the composition of the intestinal microbial community of channel catfish treated with ABPs significantly changed, and the abundance of microorganisms beneficial to channel catfish growth, such as Firmicutes and Bacteroidota increased. In conclusion, feeding channel catfish with ABPs promoted growth, enhanced immunity and antioxidant, and improved resistance to bacterial infections. Our current results might promote the use of ABPs in channel catfish and even other aquacultured fish species.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
4
|
Yang T, Zhao S, Yuan Y, Zhao X, Bu F, Zhang Z, Li Q, Li Y, Wei Z, Sun X, Zhang Y, Xie J. Platycodonis Radix Alleviates LPS-Induced Lung Inflammation through Modulation of TRPA1 Channels. Molecules 2023; 28:5213. [PMID: 37446875 DOI: 10.3390/molecules28135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Platycodonis Radix (PR), a widely consumed herbal food, and its bioactive constituents, platycodins, have therapeutic potential for lung inflammation. Transient Receptor Potential Ankyrin 1 (TRPA1), which is essential for the control of inflammation, may be involved in the development of inflammation in the lungs. The aim of this study was to determine the TRPA1-targeted effects of PR against pulmonary inflammation and to investigate the affinity of PR constituents for TRPA1 and their potential mechanisms of action. Using a C57BL/6J mouse lipopolysaccharides (LPS) intratracheal instillation pneumonia model and advanced analytical techniques (UPLC-Q-TOF-MS/MS, molecular docking, immuno-fluorescence), five platycodins were isolated from PR, and the interaction between these platycodins and hTRPA1 was verified. Additionally, we analyzed the impact of platycodins on LPS-induced TRPA1 expression and calcium influx in BEAS-2B cells. The results indicated that PR treatment significantly reduced the severity of LPS-triggered inflammation in the mouse model. Interestingly, there was a mild increase in the expression of TRPA1 caused by PR in healthy mice. Among five isolated platycodins identified in the PR extract, Platycodin D3 (PD3) showed the highest affinity for hTRPA1. The interaction between platycodins and TRPA1 was verified through molecular docking methods, highlighting the significance of the S5-S6 pore-forming loop in TRPA1 and the unique structural attributes of platycodins. Furthermore, PD3 significantly reduced LPS-induced TRPA1 expression and calcium ion influx in BEAS-2B cells, substantiating its own role as an effective TRPA1 modulator. In conclusion, PR and platycodins, especially PD3, show promise as potential lung inflammation therapeutics. Further research should explore the precise mechanisms by which platycodins modulate TRPA1 and their broader therapeutic potential.
Collapse
Affiliation(s)
- Tan Yang
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuang Zhao
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Yuan
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaotong Zhao
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Fanjie Bu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zhiyuan Zhang
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qianqian Li
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zilu Wei
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiuyan Sun
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Junbo Xie
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Wu QC, Zhang YY, Li YB, Alitongbieke G, Xue Y, Li XM, Lin ZC, Huang JF, Pan T, Pan XM, You JP, Lin JM, Pan YT. A novel cell-wall polysaccharide derived from the stipe of Agaricus bisporus inhibits mouse melanoma proliferation and metastasis. Arch Biochem Biophys 2023:109678. [PMID: 37356609 DOI: 10.1016/j.abb.2023.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Malignant melanoma is an invasive and highly aggressive skin cancer that-if diagnosed-poses a serious threat to the patient's health and life. In this work, a novel purified cell-wall polysaccharide (termed Abwp) was obtained from the discarded stipe of Agaricus bisporus (A. bisporus) and characterized to be a novel homogeneous polysaccharide consisted of a β-(1 → 4)- glucosyl backbone with β-(1 → 2) and (1 → 6)-d-glucosyl side-chains. The anti-melanoma effects of Abwp and its associated mechanisms in mice were then explored using in vitro and in vivo approaches. In vitro results showed that Abwp inhibited B16 melanoma cell proliferation and promoted their apoptosis in both time- and dose-dependent manners. In B16 cells induced with tumor necrosis factor (TNF-α), Abwp significantly decreased the protein expression of inflammatory-related signaling pathway (e.g., p38 MAPK and NF-κB) in time-, concentration-, and dose-dependent manners. Moreover, Abwp blocked nuclear entry of NF-κB-p65. In an in vivo mouse model featuring neoplasm transplantation with B16 melanoma cells, Abwp significantly inhibited the growth and proliferation of mouse melanoma. Hematoxylin staining showed that the invasion of melanoma cells into the lung tissue of the Abwp-treated group was significantly reduced. Immunohistochemical analysis showed that the expression of proliferation cell nuclear antigen (PCNA), N-cadherin, MMP-9, and Snail in the lung of mouse was significantly inhibited. Immunofluorescence showed that Abwp significantly interfered with the nuclear transcription of NF-κB-p65 in a dose-dependent manner. Collectively, these results showed that Abwp mediated p38 MAPK and NF-κB signaling pathways to inhibit the inflammatory response and malignant proliferation and metastasis of melanoma in mice.
Collapse
Affiliation(s)
- Qi-Ci Wu
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Yin-Ying Zhang
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Yun-Bing Li
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Gulimiran Alitongbieke
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Yu Xue
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Xiu-Min Li
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Zhi-Chao Lin
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Jia-Fu Huang
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Tao Pan
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Mendel (Xiamen) Biotechnology Co., Ltd., 361000, Xiamen, China; Fujian Polysaccharide Biotechnology Co., Ltd., 363000, Zhangzhou, China
| | - Xiao-Ming Pan
- Mendel (Xiamen) Biotechnology Co., Ltd., 361000, Xiamen, China
| | - Jing-Ping You
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Jin-Mei Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 363000, Zhangzhou, China.
| | - Yu-Tian Pan
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China.
| |
Collapse
|
6
|
Liu Y, Zhang Y, Mei N, Li W, Yang T, Xie J. Three acidic polysaccharides derived from sour jujube seeds protect intestinal epithelial barrier function in LPS induced Caco-2 cell inflammation model. Int J Biol Macromol 2023; 240:124435. [PMID: 37062376 DOI: 10.1016/j.ijbiomac.2023.124435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Abstract
Normal intestinal epithelial barrier function plays a key role in the prevention of many diseases such as infectious enteritis, inflammatory bowel disease, obesity, etc. In this study, three novel acidic polysaccharides ZY-2, ZY-3 and ZY-4 were isolated from sour jujube (Ziziphus jujuba Mill. var. Spinosa) seeds and purified by DEAE Sephrose Fast Flow gel. The molecular weight of ZY-2, ZY-3 and ZY-4 was 7.76 kDa, 10.71 kDa and 8.31 kDa respectively, mainly composed of different proportions of mannose, rhamnose, glucose, glucuronic acid, galacturonic acid, galactose, xylose and arabinose. 1H NMR and Congo red experiment results showed that the three polysaccharides mainly contained both α-type and β-type glycosidic bonds with obvious triple helix structural traits. The polysaccharides could up-regulate the expression levels of occludin and ZO-1 in LPS-induced inflammation Caco-2 cells, and reduce IL-6, IL-8, IL-1β and TNF-α significantly. In conclusion, the acidic polysaccharides from sour jujube seeds exhibited great potential in protection intestinal epithelial barrier function through anti-inflammatory effects.
Collapse
Affiliation(s)
- Ying Liu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yanqing Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Nanju Mei
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wei Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Tan Yang
- School of Chinese Materia Medica, Tianjin University of Chinese Medicine, Tianjin 301617, China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Yang XF, Liu X, Yan XY, Shang DJ. Effects of frog skin peptide temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam cells. Front Pharmacol 2023; 14:1139532. [PMID: 37021059 PMCID: PMC10067733 DOI: 10.3389/fphar.2023.1139532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Purpose: Atherosclerosis is one of the most important pathological foundations of cardiovascular and cerebrovascular diseases with high morbidity and mortality. Studies have shown that macrophages play important roles in lipid accumulation in the vascular wall and thrombosis formation in atherosclerotic plaques. This study aimed to explore the effect of frog skin antimicrobial peptides (AMPs) temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam cells.Methods: CCK-8, ORO staining, and intracellular cholesterol measurements were used to study cellular activity, lipid droplet formation and cholesterol levels, respectively. ELISA, real-time quantitative PCR, Western blotting and flow cytometry analysis were used to study the expression of inflammatory factors, mRNA and proteins associated with ox-LDL uptake and cholesterol efflux in macrophage-derived foam cells, respectively. Furthermore, the effects of AMPs on inflammation signaling pathways were studied.Results: Frog skin AMPs could significantly increase the cell viability of the ox-LDL-induced foaming macrophages and decrease the formation of intracellular lipid droplets and the levels of total cholesterol and cholesterol ester (CE). Frog skin AMPs inhibited foaming formation by reducing the protein expression of CD36, which regulates ox-LDL uptake but had no effect on the expression of efflux proteins ATP binding cassette subfamily A/G member 1 (ABCA1/ABCG1). Then, decreased mRNA expression of NF-κB and protein expression of p-NF-κB p65, p-IκB, p-JNK, p-ERK, p-p38 and the release of TNF-α and IL-6 occurred after exposure to the three frog skin AMPs.Conclusion: Frog skin peptide temporin-1CEa and its analogs can improve the ox-LDL induced formation of macrophage-derived foam cells, in addition, inhibit inflammatory cytokine release through inhibiting the NF-κB and MAPK signaling pathways, thereby inhibiting inflammatory responses in atherosclerosis.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- School of Basic Medical Sciences, Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Xin Liu
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Xiao-Yi Yan
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- *Correspondence: De-Jing Shang,
| |
Collapse
|
8
|
Effects of different extraction techniques on the structural, physicochemical, and bioactivity properties of heteropolysaccharides from Platycodon grandiflorum roots. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Yuan Q, Liu W, Huang L, Wang L, Yu J, Wang Y, Wu D, Wang S. Quality evaluation of immunomodulatory polysaccharides from
Agaricus bisporus
by an integrated fingerprint technique. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Ling Huang
- Institute of Food Processing and Safety College of Food Science Sichuan Agricultural University Ya'an China
| | - Liju Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd Zhangzhou China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd Zhangzhou China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Ding‐Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering Chengdu University Chengdu China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
- Macau Centre for Research and Development in Chinese Medicine University of Macau Macao China
| |
Collapse
|
10
|
Qu D, Lian S, Hu H, Sun W, Si H. Characterization and macrophages immunomodulatory activity of two water-soluble polysaccharides from Abrus cantoniensis. Front Nutr 2022; 9:969512. [PMID: 36071932 PMCID: PMC9441930 DOI: 10.3389/fnut.2022.969512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
The study aims to elucidate the physicochemical properties and immunomodulatory activity of two polysaccharides (ACPt0 and ACPt2) from Abrus cantoniensis. Results revealed that ACPt0 with a molecular weight of 26.0 kDa, was mainly composed of glucose (83.1%) and galactose (6.1%), and that ACPt2 with a molecular weight of 145.6/8.9 kDa, consisted of galactose (25.6%), galacturonic acid (22.2%), arabinos (16.6%) and galactose (11.0%) respectively. AFM and Congo red experiments suggested that ACPt0 and ACPt2 might be spherical particles with triple-helix conformation in aqueous solution. ACPt0 and ACPt2 exhibited immunomodulatory activity by promoting the proliferation, augmenting pinocytic and phagocytic capacities, releasing immunoactive molecules such as ROS, NO, iNOS, TNF-α, IL-6 and IL-1β, upregulation of the mRNA levels of corresponding cytokines in macrophages. Moreover, ACPt0 and ACPt2 were recognized by toll-like receptor 4 (TLR4) and exerted immunomodulatory effects via activating Myeloid differentiation factor 88 (MyD88), mitogen-activated protein kinases (MAPKs) and serine/threonine kinase (Akt) signaling pathways in macrophages. Notably, ACPt2 had higher immunomodulatory activity than ACPt0. Based on the present findings, ACPt0 and ACPt2 could be explored as an active component of immunomodulators in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Dongshuai Qu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- DanAg Agritech Consulting Co. Ltd., Zhengzhou, China
| | - Shuaitao Lian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongjie Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenjing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, Yulin, China
- Wenjing Sun,
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Hongbin Si,
| |
Collapse
|
11
|
Zhang ZH, Liao TT, Deng CM, Li B, Okeke ES, Feng WW, Chen Y, Zhao T, Mao GH, Wu XY. Purification and characterization of Se-enriched Grifola frondosa glycoprotein, and evaluating its amelioration effect on As 3+ -induced immune toxicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2526-2537. [PMID: 34676564 DOI: 10.1002/jsfa.11594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/05/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Selenium (Se)-enriched glycoproteins have been a research highlight for the role of both Se and glycoproteins in immunoregulation. Arsenic (As) is a toxicant that is potentially toxic to the immune function and consequently to human health. Several reports suggested that Se could reduce the toxicity of heavy metals. Moreover, more and more nutrients in food had been applied to relieve As-induced toxicity. Hence glycoproteins were isolated and purified from Se-enriched Grifola frondosa, and their preliminary characteristics as well as amelioration effect and mechanism on As3+ -induced immune toxicity were evaluated. RESULTS Four factions, namely Se-GPr11 (electrophoresis analysis exhibited one band: 14.32 kDa), Se-GPr22 (two bands: 20.57 and 31.12 kDa), Se-GPr33 (three bands: 15.08, 20.57 and 32.78 kDa) and Se-GPr44 (three bands: 16.73, 32.78 and 42.46 kDa), were obtained from Se-enriched G. frondosa via DEAE-52 and Sephacryl S-400 column. In addition, Se-GPr11 and Se-GPr44 are ideal proteins that contain high amounts of almost all essential amino acids. Thereafter, the RAW264.7 macrophage model was adopted to estimate the effect of Se-GPr11 and Se-GPr44 on As3+ -induced immune toxicity. The results showed that the pre-intervention method was the best consequent and the potential mechanisms were, first, by improving the oxidative stress state (enhancing the activity of superoxide dismutase and glutathione peroxidase, decreasing the levels of reactive oxygen species and malondialdehyde); secondly, through nuclear factor-κB and mitogen-activated protein kinase-mediated upregulation cytokines (interleukin-2 and interferon-γ) secretion induced by As3+ . CONCLUSION The results suggested Se-enriched G. frondosa may be a feasible supplement to improve health level of the As3+ pollution population. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe-Han Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Tao-Tao Liao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Chun-Meng Deng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Baorui Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wei-Wei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Guang-Hua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang-Yang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Wang J, Bai J, Wang Y, Zhang K, Li Y, Qian H, Zhang H, Wang L. Feruloylated arabinoxylan from wheat bran inhibited M1-macrophage activation and enhanced M2-macrophage polarization. Int J Biol Macromol 2022; 194:993-1001. [PMID: 34848238 DOI: 10.1016/j.ijbiomac.2021.11.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/05/2022]
Abstract
The effects of feruloylated arabinoxylan (AX) on typically activated inflammatory macrophages (M1) and alternatively anti-inflammatory macrophages (M2) and its possible mechanisms were investigated. The results revealed that feruloylated AX was composed of 37.63% arabinose and 52.23% xylose, with a weight-average molecular weight of 1.1374 × 104 Da, and bound ferulic acid content of 10.84 mg/g. Besides, feruloylated AX (50-1000 μg/mL) markedly downregulated the mRNA expressions of NO, IL-1β, TNF-α, IL-6, and IL-23a, and reduced the phosphorylation levels of p38, ERK, and JNK in M1. In contrast, the mRNA expressions of Arg-1, Mrc-1, and CCL22 were significantly upregulated by feruloylated AX (50-1000 μg/mL), and the phosphorylation level of AKT was significantly increased in M2. Overall, our results indicated that feruloylated AX could have an inhibitory or a promoting effect on already activated macrophages, and MAPK or PI3K signaling pathways might be involved in this regulation.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Junying Bai
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kuiliang Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
13
|
Xu W, Zhao M, Fu X, Hou J, Wang Y, Shi F, Hu S. Molecular mechanisms underlying macrophage immunomodulatory activity of Rubus chingii Hu polysaccharides. Int J Biol Macromol 2021; 185:907-916. [PMID: 34242647 DOI: 10.1016/j.ijbiomac.2021.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
The present study was to investigate the mechanisms involved in macrophage activation by polysaccharides from the fruits of Rubus chingii Hu (RFPs). The results showed that RFPs enhanced pinocytic and phagocytic activity, promoted the expression and secretion of inflammatory factors (ROS, PTGS2, iNOS, IL-6, IL-10 and TNF-α) and chemokines (CCL2 and CXCL10), and boosted the expression of accessory and costimulatory molecules (CD40, CD80, CD86, MHC-I and MHC-II). RNA-Seq analysis identified 2564 DEGs, 1710 GO terms and 101 KEGG pathways. TNF was identified as the core gene via analysis of pathway information integration and PPI network. The western blot analysis combined with functional verification assay confirmed that MAPK, NF-κB and Jak-STAT pathways were essential to RFPs-mediated macrophage activation. TLR2 was revealed to be the functional receptor and involved in the early recognition of RFPs. These results indicated that RFPs modulated macrophage immune response mainly through TLR2-dependent MAPK, NF-κB and Jak-STAT pathways.
Collapse
Affiliation(s)
- Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
| | - Ming Zhao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Xinyu Fu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Jing Hou
- Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, China.
| | - Yong Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Yin Z, Liang Z, Li C, Wang J, Ma C, Kang W. Immunomodulatory effects of polysaccharides from edible fungus: a review. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
15
|
Guo Y, Chen X, Gong P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int J Biol Macromol 2021; 183:1753-1773. [PMID: 34048833 PMCID: PMC8144117 DOI: 10.1016/j.ijbiomac.2021.05.139] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
The deficiency of chemical-synthesized antiviral drugs when applied in clinical therapy, such as drug resistance, and the lack of effective antiviral drugs to treat some newly emerging virus infections, such as COVID-19, promote the demand of novelty and safety anti-virus drug candidate from natural functional ingredient. Numerous studies have shown that some polysaccharides sourcing from edible and medicinal fungus (EMFs) exert direct or indirect anti-viral capacities. However, the internal connection of fungus type, polysaccharides structural characteristics, action mechanism was still unclear. Herein, our review focus on the two aspects, on the one hand, we discussed the type of anti-viral EMFs and the structural characteristics of polysaccharides to clarify the structure-activity relationship, on the other hand, the directly or indirectly antiviral mechanism of EMFs polysaccharides, including virus function suppression, immune-modulatory activity, anti-inflammatory activity, regulation of population balance of gut microbiota have been concluded to provide a comprehensive theory basis for better clinical utilization of EMFs polysaccharides as anti-viral agents.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Product Processing Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
16
|
Niego AG, Rapior S, Thongklang N, Raspé O, Jaidee W, Lumyong S, Hyde KD. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J Fungi (Basel) 2021; 7:397. [PMID: 34069721 PMCID: PMC8161071 DOI: 10.3390/jof7050397] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Macrofungi production and economic value have been increasing globally. The demand for macrofungi has expanded rapidly owing to their popularity among consumers, pleasant taste, and unique flavors. The presence of high quality proteins, polysaccharides, unsaturated fatty acids, minerals, triterpene sterols, and secondary metabolites makes macrofungi an important commodity. Macrofungi are well known for their ability to protect from or cure various health problems, such as immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia, hypercholesterolemia, and obesity. Many studies have demonstrated their medicinal properties, supported by both in vivo and in vitro experimental studies, as well as clinical trials. Numerous bioactive compounds isolated from mushrooms, such as polysaccharides, proteins, fats, phenolic compounds, and vitamins, possess strong bioactivities. Consequently, they can be considered as an important source of nutraceuticals. Numerous edible mushrooms have been studied for their bioactivities, but only a few species have made it to the market. Many species remain to be explored. The converging trends and popularity of eastern herbal medicines, natural/organic food product preference, gut-healthy products, and positive outlook towards sports nutrition are supporting the growth in the medicinal mushroom market. The consumption of medicinal mushrooms as functional food or dietary supplement is expected to markedly increase in the future. The global medicinal mushroom market size is projected to increase by USD 13.88 billion from 2018 to 2022. The global market values of promising bioactive compounds, such as lentinan and lovastatin, are also expected to rise. With such a market growth, mushroom nutraceuticals hold to be very promising in the years to come.
Collapse
Affiliation(s)
- Allen Grace Niego
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Iloilo Science and Technology University, La Paz, Iloilo 5000, Philippines
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, University Montpellier, EPHE, IRD, CS 14491, 15 Avenue Charles Flahault, CEDEX 5, 34093 Montpellier, France;
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Olivier Raspé
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
17
|
Wang QC, Wei M, Yue Y, Wu N, Wang J, Zhang Q. Structural characterization and immunostimulatory activity in vitro of a glycogen from sea urchin-Strongylocentyotus internedius. Carbohydr Polym 2021; 258:117701. [PMID: 33593572 DOI: 10.1016/j.carbpol.2021.117701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 01/19/2023]
Abstract
Sea urchin possesses both high nutritional and medicinal value. It contains diverse biological active polysaccharides. But there are few studies on its glycogen. In the current study, a glucan (MSGA) was separated from Strongylocentyotus internedius and purified by ion exchange and gel filtration column. Chemical analysis revealed that MSGA with 2.65 × 107 Da is made up entirely of glucose. The analysis of methylation, NMR and mass spectrum demonstrated that MSGA is a highly branched glycogen with α-(1→4) linked gluconic backbone and branched at C-6 (one branch per five residues). In addition, MSGA showed good in vitro immunostimulatory activity via NF-κB and MAPKs pathways. It is considered that high degree of branching is necessary for its activity. However, the relationship between structure and immunostimulatory activity of natural glycogens is difficult to elucidate because the difference in their structural properties. Therefore, much more research is needed in this area.
Collapse
Affiliation(s)
- Qing-Chi Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. and Tech, Qingdao, 266071, China; Department of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maosheng Wei
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. and Tech, Qingdao, 266071, China; Department of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yang Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. and Tech, Qingdao, 266071, China; Department of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. and Tech, Qingdao, 266071, China; Department of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. and Tech, Qingdao, 266071, China; Department of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. and Tech, Qingdao, 266071, China; Department of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
18
|
Proteoglycan from Bacillus sp. BS11 Inhibits the Inflammatory Response by Suppressing the MAPK and NF-κB Pathways in Lipopolysaccharide-Induced RAW264.7 Macrophages. Mar Drugs 2020; 18:md18120585. [PMID: 33255264 PMCID: PMC7761495 DOI: 10.3390/md18120585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation is involved in the pathogenesis of many debilitating diseases. Proteoglycan isolated from marine Bacillus sp. BS11 (EPS11) was shown to have anticancer activity, but its anti-inflammatory potential remains elusive. In the present study, the anti-inflammatory effects and mechanism of EPS11 were evaluated using a lipopolysaccharide (LPS)-induced RAW264.7 macrophage model. Biochemical characterization showed that the total sugar content and protein content of EPS11 were 49.5% and 30.2% respectively. EPS11 was composed of mannose, glucosamine, galactosamine, glucose, galactose, rhamnose, and glucuronic acid. Its molecular weight was determined to be 3.06 × 105 Da. The protein determination of EPS11 was also performed. EPS11 displayed a strong anti-inflammatory effect on LPS-stimulated RAW264.7 macrophages in vitro, which significantly suppressed inflammatory cytokines and mediators (such as NO, TNF-α, IL-6 and IL-1β, and COX-2). Western blot analysis indicated that EPS11 could downregulate the expression of many key proteins in mitogen-activated protein kinases (MAPKs) and transcription factor nuclear factor-κB (NF-κB) signaling pathways. In particular, EPS11 almost completely inhibited the expression of NF-κB P65, which indicated that EPS11 acted primarily on the NF-κB pathways. These findings offer new insights into the molecular mechanism underlying the anti-inflammatory effect of EPS11.
Collapse
|
19
|
Structural characterization and immunomodulatory activity of a polysaccharide from Eurotium cristatum. Int J Biol Macromol 2020; 162:609-617. [DOI: 10.1016/j.ijbiomac.2020.06.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
|
20
|
Molecular mechanisms of polysaccharides from Ziziphus jujuba Mill var. spinosa seeds regulating the bioavailability of spinosin and preventing colitis. Int J Biol Macromol 2020; 163:1393-1402. [DOI: 10.1016/j.ijbiomac.2020.07.229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
|
21
|
Huang F, Cong W, Xiao J, Zhou Y, Gong M, Sun J, Shan L, Xiao Q, Wang L, Liu J, Yu Z, Jia H. Association between excessive chronic iodine exposure and the occurrence of papillary thyroid carcinoma. Oncol Lett 2020; 20:189. [PMID: 32952658 PMCID: PMC7479532 DOI: 10.3892/ol.2020.12051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to elucidate the association between excessive chronic iodine exposure and the risk of developing papillary thyroid carcinoma (PTC). The demographic information and pathological characteristics of patients with thyroid nodules were retrieved from medical records at The Second Hospital of Shandong University. A fasting urine specimen was collected, and creatinine and urinary iodine concentration (UIC) were determined. The water iodine data from the domicile districts of these patients were collated from published reports. The results revealed that almost half of the patients with PTC (44.3%) also exhibited a high UIC (≥300 µg/l). Multivariate analysis revealed that the adjusted odds ratio for high UIC was 3.987 (95% CI: 1.355–11.736) and the adjusted area under the receiver operating characteristic curve was 0.776 (95% CI: 0.687–0.864), which was associated with PTC risk in patients with thyroid nodules. Integrated ecological assessment of chronic iodine exposures demonstrated that >80% (81.4%) of the patients with PTC who also exhibited a high UIC were from historically non-iodine-deficient regions, and 66.7% of patients with PTC who resided in historically iodine-excessive regions were characterized by high UICs. Importantly, a high UIC was significantly associated with capsular invasion and extrathyroid metastasis (P<0.05). Moreover, self-matching results indicated that, in patients with PTC, there were no significant differences in UIC grading between the pre- and postoperative specimens. In conclusion, excessive chronic iodine exposure is significantly associated with the risk of PTC, which contributes to increased capsular invasion and extrathyroid metastases. However, further research is required to validate these findings and to elucidate the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Fengyan Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Cong
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juan Xiao
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yong Zhou
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Maosong Gong
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jingfu Sun
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Liqun Shan
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qiang Xiao
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lihua Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianing Liu
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhigang Yu
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Hongying Jia
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
22
|
Liu G, Ye J, Li W, Zhang J, Wang Q, Zhu XA, Miao JY, Huang YH, Chen YJ, Cao Y. Extraction, structural characterization, and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus. Int J Biol Macromol 2020; 162:975-984. [PMID: 32599242 DOI: 10.1016/j.ijbiomac.2020.06.204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023]
Abstract
The extraction, purification, immunobiological activities, and structure of Agaricus bisporus polysaccharides (ABP) were investigated. Especially we purified and identified the polysaccharides with the highest in vitro immunobiological activity. The extraction conditions of ABP were optimized using single factor and orthogonal experiment. ABP Ia was screened after double purification with DEAE-52 and Sephadex G-200 and showed the best immunoregulatory activity. UV spectra analysis and high-performance gel permeation chromatography results indicated that the ABP Ia fraction did not contain any proteins or nucleotides and was a homogeneous polysaccharide with a relative molecular weight of 784 kDa. Gas chromatography mass spectroscopy results showed that ABP Ia was a heteropolysaccharide consisting of ribose, rhamnose, arabinose, xylose, mannose, glucose, and galactose at a molar ratio of 2.08:4.61:2.45:22.25:36.45:89.22:1.55. FT-IR and periodic acid oxidation analysis indicated that ABP Ia was an α-pyran polysaccharide composed of 1 → 2 and 1 → 4 glycosidic bonds, as well as a possible 1 → 3 glycosidic bond. Furthermore, atomic force microscopy revealed that ABP Ia polysaccharide chains twisted to form a rod-like architecture and, at a 5% concentration, aggregated into a tight structure similar to the shape of a stone forest. These findings identify ABP Ia as a potential functional food ingredient or pharmaceutical for immunoregulation.
Collapse
Affiliation(s)
- Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jing Ye
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ai Zhu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jian-Yin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Hui Huang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yun-Jiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|