1
|
Aghababaei F, McClements DJ, Pignitter M, Hadidi M. A comprehensive review of processing, functionality, and potential applications of lentil proteins in the food industry. Adv Colloid Interface Sci 2024; 333:103280. [PMID: 39216401 DOI: 10.1016/j.cis.2024.103280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
There is a pressing need for sustainable sources of proteins to address the escalating food demands of the expanding global population, without damaging the environment. Lentil proteins offer a more sustainable alternative to animal-derived proteins (such as those from meat, fish, eggs, or milk). They are abundant, affordable, protein rich, nutritious, and functional, which makes them highly appealing as ingredients in the food, personal care, cosmetics, pharmaceutical and other industries. In this article, the chemical composition, nutritional value, and techno-functional properties of lentil proteins are reviewed. Then, recent advances on the extraction, purification, and modification of lentil proteins are summarized. Hurdles to the widespread utilization of lentil proteins in the food industry are highlighted, along with potential strategies to surmount these challenges. Finally, the potential applications of lentil protein in foods and beverages are discussed. The intention of this article is to offer an up-to-date overview of research on lentil proteins, addressing gaps in the knowledge related to their potential nutritional benefits and functional advantages for application within the food industry. This includes exploring the utilization of lentil proteins as nanocarriers for bioactive compounds, emulsifiers, edible inks for 3D food printing, meat analogs, and components of biodegradable packaging.
Collapse
Affiliation(s)
| | | | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Austria
| | - Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Austria.
| |
Collapse
|
2
|
Ma S, Zuo J, Chen B, Fu Z, Lin X, Wu J, Zheng B, Lu X. Structural, properties and digestion in vitro changes of starch subjected to high pressure homogenization: An update review. Int J Biol Macromol 2024:137118. [PMID: 39489250 DOI: 10.1016/j.ijbiomac.2024.137118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
High pressure homogenization (HPH) is considered as a promising method for improving the ideal metabolic reaction of starch-based foods in the body, but there is still no comprehensive understanding of the structure-property relationship of starch treated with HPH. This study reviews the advantages and limitations of HPH in starch-based foods processing in recent years. It also elaborates the bidirectional regulation of HPH on starch structure-property and its potential in improving nutritional quality, which includes the regular modification effects of HPH on the multi-scale structure, physicochemical properties, and digestion characteristics of starch. It was found that HPH could lead to the degradation of amylopectin, destruction of amorphous structure, and homogenization of fine particles, promoting gelatinization and ultimately endowing starch with good solubility and digestibility. Moreover, it could reorganize and reorder the internal starch chains, or cause the particles to disintegrate into an amorphous state, thereby enhancing the anti-digestibility of starch. The interaction of starch with different nutrients during the HPH process could be further investigated in future studies and explored with other techniques for structure-property modifications, which would help expand the development of personalized starch foods to meet growing consumer demands.
Collapse
Affiliation(s)
- Shuang Ma
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxin Zuo
- Centre of Excellence in Agri-food Technologies, National Centre for Food Manufacturing, College of Health and Science, University of Lincoln, Holbeach, Spalding, UK
| | - Bingbing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaoxia Fu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lin
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaqi Wu
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Galvão AMMT, Costa GFD, Santos MD, Pollonio MAR, Hubinger MD. Replacing the animal fat in Bologna sausages using high internal phase emulsion stabilized with lentil protein isolate (Lens culinaris). Meat Sci 2024; 216:109589. [PMID: 38970934 DOI: 10.1016/j.meatsci.2024.109589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
High internal phase emulsions (HIPEs) are promising techniques that can replace saturated fat in food without reducing the product's texture, sensory attributes, water-holding capacity, and cooking loss. In the current investigation, 100% pork back fat was replaced by HIPEs formed with lentil protein isolate (LPI) in Bologna sausages. HIPEs were prepared by 25% LPI dispersion (2, 4, 6, and 8%, w/w) and 75% (w/w) soybean oil. HIPEs with higher LPI concentration (4, 6, and 8%, w/w) showed lower droplet size, firmer appearance, and better rheology behavior than 2% LPI. The concentrations LPI (2%, 4%, 6%, and 8%, w/w) led to increased moisture in sausages (FH2, FH4, FH6, and FH8, respectively) compared to the FC. These LPI levels resulted in sausage values for pressed juice similar to the FC and lower energy values than sausages with soybean oil (FO) and pork back fat (FC). Besides, these LPI concentrations (4%, 6%, and 8%, w/w) resulted in a lower oil oxidation level in sausages with HIPEs (FH4, FH6, and FH8, respectively) compared to the control sausage formulation with pork back fat (FC). Bologna sausages elaborated with HIPEs showed emulsion stability values higher than 97%, without significance difference between them. The texture and sensory properties of sausages made with HIPEs were comparable to those made with pork back fat. HIPEs may improve the oxidation stability of the Bologna sausages. These results highlight the effectiveness of HIPEs structured with lentil protein in successfully substituting pork back fat in Bologna sausages with a better nutritional appeal.
Collapse
Affiliation(s)
- Andrêssa Maria Medeiros Theóphilo Galvão
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil.
| | - Gilmar Freire da Costa
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Mirian Dos Santos
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Marise Aparecida Rodrigues Pollonio
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Míriam Dupas Hubinger
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
4
|
Yang Y, Zhang C, Ma CM, Bian X, Zou L, Fu Y, Shi YG, Wu Y, Zhang N. Characterization of structural and functional properties of soybean 11S globulin during renaturation after denaturation induced by changes in pH. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6778-6786. [PMID: 38567792 DOI: 10.1002/jsfa.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 03/03/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND This study explored the denaturation of 11S globulin, a protein known for its diverse functional properties in soy protein applications, at pH 3.0 and pH 10.0, followed by a gradual return to pH 7.0 to facilitate renaturation. It investigated the structural and functional changes during renaturation induced by a change in pH, revealing the stabilization mechanism of 11S globulin. RESULTS The findings revealed that during pH adjustment to neutral, the denatured soybean 11S globulin - resulting from alkaline (pH 10.0) or acidic (pH 3.0) treatments - experienced a refolding of its extended tertiary structure to varying extents. The particle size and the proportions of α-helix and β-sheet in the secondary structure aligned progressively with those of the natural-state protein. However, for the alkali-denatured 11S, the β-sheet content decreased upon adjustment to neutral, whereas an increase was observed for the acid-denatured 11S. In terms of functional properties, after alkaline denaturation, the foaming capacity (FC) and emulsifying activity index (EAI) of 11S increased by 1.4 and 1.2 times, respectively, in comparison with its native state. The solubility, foamability, and emulsifiability of the alkali-denatured 11S gradually diminished during renaturation but remained superior to those of the native state. Conversely, these properties showed an initial decline, followed by an increase during renaturation triggered by pH neutralization. CONCLUSIONS This research contributes to the enhancement of protein functionality, offering a theoretical foundation for the development of functional soy protein products and expanding their potential applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Can Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Ling Zou
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Yan-Guo Shi
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yan Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
5
|
Verma D, Vashisht P, Pahariya P, Adu Poku F, Kohli P, Sharma A, Albiol Tapia M, Choudhary R. Compatibility of pulse protein in the formulation of plant based yogurt: a review of nutri-functional properties and processing impact. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38973295 DOI: 10.1080/10408398.2024.2373383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
With the increased environmental concerns and health awareness among consumers, there has been a notable interest in plant-based dairy alternatives. The plant-based yogurt market has experienced rapid expansion in recent years. Due to challenges related to cultivation, higher cost of production and lower protein content researchers have explored the viability of pulse-based yogurt which has arisen as an economically and nutritionally abundant solution. This review aims to examine the feasibility of utilizing pulse protein for yogurt production. The nutritional, antinutritional, and functional characteristics of various pulses were discussed in detail, alongside the modifications in these properties during the various stages of yogurt manufacturing. The review also sheds light on pivotal findings from existing literature and outlines challenges associated with the production of pulse-based yogurt. Pulses have emerged as promising base materials for yogurt manufacturing due to their favorable nutritional and functional characteristics. Further, the fermentation process can effectively reduce antinutritional components and enhance digestibility. Nonetheless, variations in sensorial and rheological properties were noted when different types of pulses were employed. This issue can be addressed by employing suitable combinations to achieve the desired properties in pulse-based yogurt.
Collapse
Affiliation(s)
- Digvijay Verma
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | | | - Prachi Pahariya
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Felicia Adu Poku
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Punit Kohli
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Amandeep Sharma
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Marta Albiol Tapia
- Fermentation Science Institute, Southern Illinois University, Carbondale, Illinois, USA
| | - Ruplal Choudhary
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
6
|
Yan X, Yan J, Shi X, Song Y, McClements DJ, Ma C, Liu X, Chen S, Xu D, Liu F. High internal phase double emulsions stabilized by modified pea protein-alginate complexes: Application for co-encapsulation of riboflavin and β-carotene. Int J Biol Macromol 2024; 270:132313. [PMID: 38740156 DOI: 10.1016/j.ijbiomac.2024.132313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The application of many hydrophilic and hydrophobic nutraceuticals is limited by their poor solubility, chemical stability, and/or bioaccessibility. In this study, a novel Pickering high internal phase double emulsion co-stabilized by modified pea protein isolate (PPI) and sodium alginate (SA) was developed for the co-encapsulation of model hydrophilic (riboflavin) and hydrophobic (β-carotene) nutraceuticals. Initially, the effect of emulsifier type in the external water phase on emulsion formation and stability was examined, including commercial PPI (C-PPI), C-PPI-SA complex, homogenized and ultrasonicated PPI (HU-PPI), and HU-PPI-SA complex. The encapsulation and protective effects of these double emulsions on hydrophilic riboflavin and hydrophobic β-carotene were then evaluated. The results demonstrated that the thermal and storage stabilities of the double emulsion formulated from HU-PPI-SA were high, which was attributed to the formation of a thick biopolymer coating around the oil droplets, as well as thickening of the aqueous phase. Encapsulation significantly improved the photostability of the two nutraceuticals. The double emulsion formulated from HU-PPI-SA significantly improved the in vitro bioaccessibility of β-carotene, which was mainly attributed to inhibition of its chemical degradation under simulated acidic gastric conditions. The novel delivery system may therefore be used for the development of functional foods containing multiple nutraceuticals.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyue Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuying Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430071, Hubei, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Maria Medeiros Theóphilo Galvão A, Lamy Rasera M, de Figueiredo Furtado G, Grossi Bovi Karatay G, M Tavares G, Dupas Hubinger M. Lentil protein isolate (Lens culinaris) subjected to ultrasound treatment combined or not with heat-treatment: structural characterization and ability to stabilize high internal phase emulsions. Food Res Int 2024; 183:114212. [PMID: 38760140 DOI: 10.1016/j.foodres.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 05/19/2024]
Abstract
This study evaluated the effect of ultrasound treatment combined or not with heat treatment applied to lentil protein isolate (LPI) aiming to enhance its ability to stabilize high internal phase emulsions (HIPE). LPI dispersion (2%, w/w) was ultrasound-treated at 60% (UA) and 70% (UB) amplitude for 7 min; these samples were subjected to and then heat treatments at 70 °C (UAT70 and UBT70, respectively) or 80 °C (UAT80 and UBT80, respectively) for 20 min. HIPEs were produced with 25% untreated and treated LPI dispersions and 75% soybean oil using a rotor-stator (15,500 rpm/1 min). The LPI dispersions were evaluated for particle size, solubility, differential scanning calorimetry, electrophoresis, secondary structure estimation (circular dichroism and FT-IR), intrinsic fluorescence, surface hydrophobicity, and free sulfhydryl groups content. The HIPEs were evaluated for droplet size, morphology, rheology, centrifugal stability, and the Turbiscan test. Ultrasound treatment decreased LPI dispersions' particle size (∼80%) and increased solubility (∼90%). Intrinsic fluorescence and surface hydrophobicity confirmed LPI modification due to the exposure to hydrophobic patches. The combination of ultrasound and heat treatments resulted in a reduction in the free sulfhydryl group content of LPI. HIPEs produced with ultrasound-heat-treated LPI had a lower droplet size distribution mode, greater oil retention values in the HIPE structure (> 98%), lower Turbiscan stability index (< 2), and a firmer and more homogeneous appearance compared to HIPE produced with untreated LPI, indicating higher stability for the HIPEs stabilized by treated LPI. Therefore, combining ultrasound and heat treatments could be an effective method for the functional modification of lentil proteins, allowing their application as HIPE emulsifiers.
Collapse
Affiliation(s)
- Andrêssa Maria Medeiros Theóphilo Galvão
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil.
| | - Mariana Lamy Rasera
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme de Figueiredo Furtado
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, km 12 - SP 189, Buri, SP 18290-000, Brazil
| | - Graziele Grossi Bovi Karatay
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme M Tavares
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Míriam Dupas Hubinger
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
8
|
Su J, Qiu X, Pei Y, Zhang Z, Liu G, Luan J, Nie J, Li X. Physical Stability of Lotus Seed and Lily Bulb Beverage: The Effects of Homogenisation on Particle Size Distribution, Microstructure, Rheological Behaviour, and Sensory Properties. Foods 2024; 13:769. [PMID: 38472882 DOI: 10.3390/foods13050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The lotus seed and lily bulb beverage (LLB) has a problem with solid particle sedimentation. To address this issue, LLB was homogenised twice at different pressures (0~100 MPa) using a homogeniser. This study aims to investigate the changes in the particle size distribution (PSD), microstructure, rheological behaviour, sedimentation index (IS), turbidity, physicochemical properties, and sensory quality of LLBs after homogenisation treatments. The results regarding PSD and microstructure showed that the suspended particles were decomposed at high pressure with increasing homogenisation pressure, forming small particles of cellular material, cell wall fragments, fibre fractions, and polymers. The LLB showed shear-thinning behaviour and weak gelation characteristics (G' > G″) and rheological properties. Among all homogenisation pressures, the 60 MPa sample showed the lowest sedimentation rate and the highest turbidity. When the pressure was increased from 0 to 100 MPa, the total soluble solid (TSS) content showed an upward trend, while the ascorbic acid content (AAC) gradually decreased. The highest sensory evaluation was observed in the 60 MPa sample in terms of overall acceptability.
Collapse
Affiliation(s)
- Jiajia Su
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaokun Qiu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Yi Pei
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhuo Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Guanghui Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Jiaojiao Luan
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Jiangli Nie
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
9
|
Lee S, Kim E, Jo M, Choi YJ. Characterization of yeast protein isolates extracted via high-pressure homogenization and pH shift: A promising protein source enriched with essential amino acids and branched-chain amino acids. J Food Sci 2024; 89:900-912. [PMID: 38193157 DOI: 10.1111/1750-3841.16918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
In the global food industry, plant-based protein isolates are gaining prominence as an alternative to animal-based counterparts. However, their nutritional value often falters due to insufficient essential amino acids. To address this issue, our study introduces a sustainable protein isolate derived from yeast cells, achieved through high-pressure homogenization (HPH) and alkali pH-shifting treatment. Subjected to HPH pressures ranging from 60 to 120 MPa and 1 to 10 cycles, higher pressure and cycle numbers resulted in enhanced disruption of yeast cells. Combining HPH with alkali pH-shifting treatment significantly augmented protein extraction. Four cycles of HPH at 100 MPa yielded the optimized protein content, resulting in a yeast protein isolate (YPI) with 75.3 g protein per 100 g powder, including 30.0 g of essential amino acids and 18.4 g of branched-chain amino acids per 100 g protein. YPI exhibited superior water and oil-holding capacities compared to pea protein isolate, whey protein isolate (WPI), and soy protein isolate. Although YPI exhibited lower emulsifying ability than WPI, it excelled in stabilizing protein-stabilized emulsions. For foaming, YPI outperformed others in both foaming ability and stabilizing protein-based foam. In conclusion, YPI surpasses numerous plant-based protein alternatives in essential amino acids and branched-chain amino acids contents, positioning it as an excellent candidate for widespread utilization as a sustainable protein source in the food industry, owing to its exceptional nutritional advantages, as well as emulsifying and foaming properties. PRACTICAL APPLICATION: This study introduces a sustainable protein isolate derived from yeast cells. YPI exhibited considerable promise as a protein source. Nutritionally, YPI notably surpassed plant-based protein isolates in EAA and BCAA contents. Functionally, YPI demonstrated superior water-holding and oil-holding capacities, as well as an effective emulsion and foam stabilizer.
Collapse
Affiliation(s)
- Suyoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| | - Eunghee Kim
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Myeongsu Jo
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| |
Collapse
|
10
|
Malterre N, Bot F, Lerda E, Arendt EK, Zannini E, O’Mahony JA. Enhancing the Techno-Functional Properties of Lentil Protein Isolate Dispersions Using In-Line High-Shear Rotor-Stator Mixing. Foods 2024; 13:283. [PMID: 38254582 PMCID: PMC10814905 DOI: 10.3390/foods13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
In response to global challenges such as climate change and food insecurity, plant proteins have gained interest. Among these, lentils have emerged as a promising source of proteins due to their good nutritional profile and sustainability considerations. However, their widespread use in food products has been impeded by limited solubility. This study aimed to investigate the potential of high-shear mixing, a resource-efficient technique, to enhance lentil protein solubility and its functional properties. Red lentil protein isolate powders were rehydrated and subjected to a semi-continuous in-line high-shear treatment at 10,200 rpm for a timespan ranging from 0 to 15 min. The results highlighted a significant (p < 0.05) increase in solubility from 46.87 to 68.42% after 15 min of shearing and a reduction in particle size as a result of the intense shearing and disruption provided by the rotor and forced passage through the perforations of the stator. The volume-weighted mean diameter decreased from 5.13 to 1.72 µm after 15 min of shearing, also highlighted by the confocal micrographs which confirmed the breakdown of larger particles into smaller and more uniform particles. Rheological analysis indicated consistent Newtonian behaviour across all dispersions, with apparent viscosities ranging from 1.69 to 1.78 mPa.s. Surface hydrophobicity increased significantly (p < 0.05), from 830 to 1245, indicating exposure of otherwise buried hydrophobic groups. Furthermore, colloidal stability of the dispersion was improved, with separation rates decreasing from 71.23 to 24.16%·h-1. The significant enhancements in solubility, particle size reduction, and colloidal stability, highlight the potential of in-line high-shear mixing in improving the functional properties of lentil protein isolates for formulating sustainable food products with enhanced techno-functional properties.
Collapse
Affiliation(s)
- Nicolas Malterre
- School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland; (N.M.); (E.L.)
| | - Francesca Bot
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Emilie Lerda
- School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland; (N.M.); (E.L.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland; (N.M.); (E.L.)
- APC Microbiome Institute Ireland, University College Cork, T12 Y337 Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland; (N.M.); (E.L.)
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - James A. O’Mahony
- School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland; (N.M.); (E.L.)
| |
Collapse
|
11
|
Galvão AMMT, Freitas JC, Karatay GGB, Furtado GDF, Rasera ML, Tavares GM, Hubinger MD. Thermo-induced changes in the structure of lentil protein isolate (Lens culinaris) to stabilize high internal phase emulsions. Int J Biol Macromol 2023; 253:127313. [PMID: 37820922 DOI: 10.1016/j.ijbiomac.2023.127313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
This study aims to assess the impact of heat treatment on the emulsifying properties of lentil protein isolate (LPI) dispersion to produce high internal phase emulsions (HIPEs). The heat-treated LPI dispersion was characterized by size, turbidity, solubility, zeta potential, free sulfhydryl group, electrophoresis, differential scanning calorimetry, circular dichroism, Fourier transforms infrared spectroscopy and intrinsic fluorescence. HIPEs were produced with 25% of LPI dispersion (2%, w/w) and soybean oil (75%) using a rotor-stator (15,500 rpm/1 min). HIPEs were evaluated for their droplet size, zeta potential, centrifugal stability, microscopy, appearance, Turbiscan stability, and rheology over 60 days (25 °C). Heat treatment reduced the size of LPI, resulting in increased turbidity, solubility, and exposure of hydrophobic groups. HIPEs produced with heat-treated LPI at 70 °C (HIPE70) and 80 °C (HIPE80) for 20 min exhibited lower droplet sizes, increased stability, reduced oil loss, and a homogeneous appearance compared to HIPE produced with untreated LPI (HIPEc). In addition, HIPE70 and HIPE80 displayed resistance to shear stress, higher apparent viscosity, and increased storage modulus than HIPEc. HIPEs produced with heat-treated LPI were stable, suggesting that the treatment was efficient for improving the functional properties of the protein and the possibility of future research focusing on fat substitutes in food applications.
Collapse
Affiliation(s)
- Andrêssa Maria Medeiros Theóphilo Galvão
- Department of Food Engineering and Technology, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil.
| | - João Cury Freitas
- Department of Food Engineering and Technology, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Graziele Grossi Bovi Karatay
- Department of Food Engineering and Technology, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme de Figueiredo Furtado
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Mariana Lamy Rasera
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme M Tavares
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Míriam Dupas Hubinger
- Department of Food Engineering and Technology, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
12
|
Baskıncı T, Gul O. Modifications to structural, techno-functional and rheological properties of sesame protein isolate by high pressure homogenization. Int J Biol Macromol 2023; 250:126005. [PMID: 37562472 DOI: 10.1016/j.ijbiomac.2023.126005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
In this study, we aimed to determine the effect of high pressure homogenization (HPH) at a pressure up to 150 MPa on microstructural, techno-functional and rheological properties of sesame protein isolate (SPI). HPH treatment caused a partial change in the secondary structure of SPI, however, the changes in surface hydrophobicity and free -SH groups, indicating HPH had significant effect on the tertiary structure. After the HPH treatment, the particles dispersed homogeneously with more rougher surface. Sesame proteins had the smallest particle size (0.79 μm) and highest zeta potential (38.83 mV) at 100 MPa pressure. The most developed water/oil holding capacity, emulsification and foaming properties were achieved at 100 MPa pressure. However, the maximum stable foam formation (83.33 %) was determined at 150 MPa pressure. When the shear rate is fixed as 50 1/s, an increase in the viscosity value of the samples treated with 100 and 150 MPa pressure was detected compared to the control sample, while the lowest viscosity was determined the ones treated at 50 MPa. In all samples except 50 MPa pressure-treated proteins, viscoelastic character became dominant with increasing frequency (G' > G″). Modification with HPH resulted in a decrease of about 15 °C in the gelation temperature of SPI.
Collapse
Affiliation(s)
- Tuğba Baskıncı
- Department of Food Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Osman Gul
- Department of Food Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
| |
Collapse
|
13
|
Rathnakumar K, Balakrishnan G, Ramesh B, Sujayasree OJ, Pasupuleti SK, Pandiselvam R. Impact of emerging food processing technologies on structural and functional modification of proteins in plant-based meat alternatives: An updated review. J Texture Stud 2023; 54:599-612. [PMID: 36849713 DOI: 10.1111/jtxs.12747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
In the past decade, the plant-based meat alternative industry has grown rapidly due to consumers' demand for environmental-friendly, nutritious, sustainable and humane choices. Consumers are not only concerned about the positive relationship between food consumption and health, they are also keen on the environmental sustainability. With such increased consumers' demand for meat alternatives, there is an urgent need for identification and modification of protein sources to imitate the functionality, textural, organoleptic and nutritional characteristics of traditional meat products. However, the plant proteins are not readily digestible and require more functionalization and modification are required. Proteins has to be modified to achieve high quality attributes such as solubility, gelling, emulsifying and foaming properties to make them more palatable and digestible. The protein source from the plant source in order to achieve the claims which needs more high protein digestibility and amino acid bioavailability. In order to achieve these newer emerging non-thermal technologies which can operate under mild temperature conditions can reach a balance between feasibility and reduced environmental impact maintaining the nutritional attributes and functional attributes of the proteins. This review article has discussed the mechanism of protein modification and advancements in the application of non-thermal technologies such as high pressure processing and pulsed electric field and emerging oxidation technologies (ultrasound, cold plasma, and ozone) on the structural modification of plant-based meat alternatives to improve, the techno-functional properties and palatability for successful food product development applications.
Collapse
Affiliation(s)
- Kaavya Rathnakumar
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
14
|
Ma Y, Zhang J, He J, Xu Y, Guo X. Effects of high-pressure homogenization on the physicochemical, foaming, and emulsifying properties of chickpea protein. Food Res Int 2023; 170:112986. [PMID: 37316018 DOI: 10.1016/j.foodres.2023.112986] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
In order to expand the utilization of chickpeas in various food products, this study investigated the effects of different homogenization pressures (0-150 MPa) and cycles (1-3) on the physicochemical, and functional properties of chickpea protein. After high-pressure homogenization (HPH) treatment, hydrophobic groups and sulfhydryl groups of chickpea protein was exposed which increased its surface hydrophobicity and decreased its total sulfhydryl content. SDS-PAGE analysis showed that the molecular weight of modified chickpea protein remained unchanged. The particle size and turbidity of chickpea protein significantly decreased with an increase in homogenization pressure and cycles. Furthermore, the solubility, foaming, and emulsifying properties of chickpea protein were all enhanced by HPH treatment. In addition, the emulsions prepared by modified chickpea protein showed better stability capacity due to its smaller particle size and higher zeta potential. Therefore, HPH might be an effective technique to improve the functional properties of chickpea protein.
Collapse
Affiliation(s)
- Yigang Ma
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jinmeng He
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yingjie Xu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
15
|
Lima Nascimento LG, Odelli D, Fernandes de Carvalho A, Martins E, Delaplace G, Peres de Sá Peixoto Júnior P, Nogueira Silva NF, Casanova F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods 2023; 12:2385. [PMID: 37372596 DOI: 10.3390/foods12122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the context of a diet transition from animal protein to plant protein, both for sustainable and healthy scopes, innovative plant-based foods are being developing. A combination with milk proteins has been proposed as a strategy to overcome the scarce functional and sensorial properties of plant proteins. Based on this mixture were designed several colloidal systems such as suspensions, gels, emulsions, and foams which can be found in many food products. This review aims to give profound scientific insights on the challenges and opportunities of developing such binary systems which could soon open a new market category in the food industry. The recent trends in the formulation of each colloidal system, as well as their limits and advantages are here considered. Lastly, new approaches to improve the coexistence of both milk and plant proteins and how they affect the sensorial profile of food products are discussed.
Collapse
Affiliation(s)
- Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | - Davide Odelli
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | | | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Guillaume Delaplace
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | | | | | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Gul O, Saricaoglu FT, Atalar I, Gul LB, Tornuk F, Simsek S. Structural Characterization, Technofunctional and Rheological Properties of Sesame Proteins Treated by High-Intensity Ultrasound. Foods 2023; 12:foods12091791. [PMID: 37174329 PMCID: PMC10178585 DOI: 10.3390/foods12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Plant-derived proteins, such as those from sesame seeds, have the potential to be used as versatile food ingredients. End-use functionality can be further improved by high-intensity ultrasound treatments. The effects of high-intensity ultrasound on the properties of sesame protein isolates from cold-pressed sesame cake were evaluated. The SDS-PAGE demonstrated no significant changes in the molecular weight of proteins. Ultrasound treatments resulted in decreased particle size with a more uniform distribution, resulting in the exposure of hydrophobicity and free -SH groups and increased zeta potential. Although FTIR spectra of proteins were similar after ultrasonication, a partial increase in the intensity of the amide A band was observed. The ultrasound significantly (p < 0.05) affected the secondary structure of proteins. While optical micrographics revealed a dispersed structure with smaller particles after treatments, microstructural observations indicated more rough and irregular surfaces. Water solubility was improved to 80.73% in the sample subjected to 6 min of ultrasonication. Sesame protein solutions treated for 4 and 6 min exhibited viscoelastic structure (storage modulus (G') > loss modulus (G'')). In addition, the gelation temperature of proteins decreased to about 60-65 °C with increasing treatment time. Overall, ultrasound is a useful technique for the modification of sesame protein isolates.
Collapse
Affiliation(s)
- Osman Gul
- Department of Food Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150 Kastamonu, Turkey
| | - Furkan Turker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Ilyas Atalar
- Department of Food Engineering, Faculty of Agriculture, Eskisehir Osmangazi University, 26160 Eskisehir, Turkey
| | - Latife Betul Gul
- Department of Food Engineering, Faculty of Engineering, Giresun University, 28200 Giresun, Turkey
| | - Fatih Tornuk
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34349 Istanbul, Turkey
| | - Senay Simsek
- Department of Food Science & Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Dhiman A, Thakur K, Parmar V, Sharma S, Sharma R, Kaur G, Singh B, Suhag R. New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Sun B, Gu X, Wang F, Liu L, Huang Y, Gao Y, Lü M, Zhu Y, Shi Y, Zhu X. Effect of high-pressure homogenization on Ca 2+ -induced gel formation of soybean 11 S globulin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2057-2069. [PMID: 36541590 DOI: 10.1002/jsfa.12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND High-pressure homogenization (HPH) is commonly used as a non-thermal processing technique for soybean and soy protein products, and the preparation of soy protein gel products often requires the synergistic effect of HPH and heat treatment. The dissociative association behavior of 11 S is the key to the protein gel formation state. In this study, therefore, 11 S thermal gels were prepared by high-pressure homogenization and co-induction (90 °C, 30 min) (adding Ca2+ to promote gel formation before heat treatment), and the effects of different high-pressure homogenization pressures (0-100 MPa) and co-treatment on the dissociative association behavior of 11 S protein, gel properties, and microstructure of 11 S gels were investigated. RESULTS The results showed that HPH at higher pressures led to the breaking of disulfide bonds of aggregates and disrupted non-covalent interactions in protein aggregates, leading to collisions between protein aggregates and the reduction of large protein aggregates. High-pressure homogenization treatment at 60 MPa improved the gel properties of 11 S more. The HPH combined with heating changed the binary and tertiary structure of 11 S soy globulin and enhanced the hydrophobic interaction between 11 S molecules, thus improving the gel properties of 11 S. The change in intermolecular forces reflected the positive effect of HPH treatment on the formation of denser and more homogeneous protein gels. CONCLUSION In conclusion, high-pressure homogenization combined with heating can improve the properties of 11 S gels by changing the structure of 11 S protein, providing data and theoretical support for soy protein processing and its further applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingyu Sun
- College of Food Engineering, Harbin University of Commerce, Heilongjiang, PR China
| | - Xuelian Gu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang, PR China
| | - Fengqiujie Wang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang, PR China
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang, PR China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang, PR China
| | - Yuan Gao
- College of Food Engineering, Harbin University of Commerce, Heilongjiang, PR China
| | - Mingshou Lü
- College of Food Engineering, Harbin University of Commerce, Heilongjiang, PR China
| | - Ying Zhu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang, PR China
| | - Yanguo Shi
- College of Food Engineering, Harbin University of Commerce, Heilongjiang, PR China
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang, PR China
| |
Collapse
|
19
|
Lin J, Fan S, Ruan Y, Wu D, Yang T, Hu Y, Li W, Zou L. Tartary Buckwheat Starch Modified with Octenyl Succinic Anhydride for Stabilization of Pickering Nanoemulsions. Foods 2023; 12:foods12061126. [PMID: 36981053 PMCID: PMC10048578 DOI: 10.3390/foods12061126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
In this study, Tartary buckwheat starch was modified to different degrees of substitution (DS) with octenyl succinate anhydride (OS-TBS) in order to explore its potential for stabilizing Pickering nanoemulsions. OS-TBS was prepared by reacting Tartary buckwheat starch with 3, 5 or 7% (w/v) octenyl succinate in an alkaline aqueous solution at pH 8.5. Fourier-transform infrared spectroscopy gave peaks at 1726 cm−1 (C=O) and 1573 cm−1 (RCOO−), indicating the formation of OS-TBS. We further studied the physicochemical properties of the modified starch as well as its emulsification capacity. As the DS with octenyl succinate anhydride increased, the amylose content and gelatinization temperature of the OS-TBS decreased, while its solubility increased. In contrast to the original Tartary buckwheat starch, OS-TBS showed higher surface hydrophobicity, and its particles were more uniform in size and its emulsification stability was better. Higher DS with octenyl succinate led to better emulsification. OS-TBS efficiently stabilized O/W Pickering nanoemulsions and the average particle size of the emulsion was maintained at 300–400 nm for nanodroplets. Taken together, these results suggest that OS-TBS might serve as an excellent stabilizer for nanoscale Pickering emulsions. This study may suggest and expand the use of Tartary buckwheat starch in nanoscale Pickering emulsions in various industrial processes.
Collapse
Affiliation(s)
- Jie Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shasha Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuyue Ruan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ting Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medicine, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: ; Tel.: +86-028-84616029
| |
Collapse
|
20
|
Effect of High-pressure Homogenization on Structure and Properties of Soy Protein Isolate/polyphenol Complexes. FOOD BIOPHYS 2023. [DOI: 10.1007/s11483-023-09781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
21
|
Keuleyan E, Gélébart P, Beaumal V, Kermarrec A, Ribourg-Birault L, Le Gall S, Meynier A, Riaublanc A, Berton-Carabin C. Pea and lupin protein ingredients: New insights into endogenous lipids and the key effect of high-pressure homogenization on their aqueous suspensions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
22
|
D'Alessio G, Flamminii F, Faieta M, Prete R, Di Michele A, Pittia P, Di Mattia CD. High pressure homogenization to boost the technological functionality of native pea proteins. Curr Res Food Sci 2023; 6:100499. [PMID: 37081859 PMCID: PMC10111953 DOI: 10.1016/j.crfs.2023.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Pea proteins are being increasingly used for the formulation of plant-based products, but their globular structure and the presence of aggregates can affect their technological properties. In this study, the effect of high pressure homogenization (HPH) at different intensities (60 and 100 MPa) was investigated as a pre-treatment to modulate the techno-functional properties of a pea protein isolate (IP) extracted through an alkaline extraction/isoelectric precipitation process. SDS-PAGE, circular dichroism, thermal properties, total free sulfhydryl groups, antioxidant capacity and reducing properties were evaluated along with technological indices as solubility, WHC and OHC, interfacial tension and emulsifying capacity. HPH treatments were able to unfold and modify proteins structure, leading also to a change of the relative abundance of pea protein globulins (SDS-PAGE) and of the vicilin to legumin ratio. Solubility, WHC and OHC were improved, while interfacial tension and emulsifying capacity were weakly affected. However, an enhanced physical stability over time of the emulsions prepared with the 60 MPa-treated protein was found, likely as an effect of the decreased ratio between vicilin and legumin after treatment. Results of this study will contribute to deepen the effect of the HPH technology used as pre-treatment, adding useful results and expanding knowledge about the structure and techno-functional properties of native and modified pea proteins.
Collapse
Affiliation(s)
- Giulia D'Alessio
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Federica Flamminii
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D'Annunzio” of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Marco Faieta
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Roberta Prete
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy
| | - Paola Pittia
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Carla Daniela Di Mattia
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
- Corresponding author.
| |
Collapse
|
23
|
Janssen F, Monterde V, Wouters AGB. Relevance of the air-water interfacial and foaming properties of (modified) wheat proteins for food systems. Compr Rev Food Sci Food Saf 2023; 22:1517-1554. [PMID: 36815740 DOI: 10.1111/1541-4337.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 02/24/2023]
Abstract
A shift from animal protein- to plant protein-based foods is crucial in transitioning toward a more sustainable global food system. Among food products typically stabilized by animal proteins, food foams represent a major category. Wheat proteins are ubiquitous and structurally diverse, which offers opportunities for exploiting them for food foam and air-water interface stabilization. Notably, they are often classified into those that are soluble in aqueous systems (albumins and globulins) and those that are not (gliadins and glutenins). However, gliadins are at least to an extent water extractable and thus surface active. We here provide a comprehensive overview of studies investigating the air-water interfacial and foaming properties of the different wheat protein fractions. Characteristics in model systems are related to the functional role that wheat proteins play in gas cell stabilization in existing wheat-based foods (bread dough, cake batter, and beer foam). Still, to further extend the applicability of wheat proteins, and particularly the poorly soluble glutenins, to other food foams, their modification is required. Different physical, (bio)chemical, and other modification strategies that have been utilized to alter the solubility and therefore the air-water interfacial and foaming properties of the gluten protein fraction are critically reviewed. Such approaches may open up new opportunities for the application of (modified) gluten proteins in other food products, such as plant-based meringues, whippable drinks, or ice cream. In each section, important knowledge gaps are highlighted and perspectives for research efforts that could lead to the rational design of wheat protein systems with enhanced functionality and overall an increased applicability in food industry are proposed.
Collapse
Affiliation(s)
- Frederik Janssen
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Viena Monterde
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Renoldi N, Melchior S, Calligaris S, Peressini D. Application of high-pressure homogenization to steer the technological functionalities of chia fibre-protein concentrate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Kumar P, Sharma N, Ahmed MA, Verma AK, Umaraw P, Mehta N, Abubakar AA, Hayat MN, Kaka U, Lee SJ, Sazili AQ. Technological interventions in improving the functionality of proteins during processing of meat analogs. Front Nutr 2022; 9:1044024. [PMID: 36601080 PMCID: PMC9807037 DOI: 10.3389/fnut.2022.1044024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Meat analogs have opened a new horizon of opportunities for developing a sustainable alternative for meat and meat products. Proteins are an integral part of meat analogs and their functionalities have been extensively studied to mimic meat-like appearance and texture. Proteins have a vital role in imparting texture, nutritive value, and organoleptic attributes to meat analogs. Processing of suitable proteins from vegetable, mycoproteins, algal, and single-cell protein sources remains a challenge and several technological interventions ranging from the isolation of proteins to the processing of products are required. The present paper reviews and discusses in detail various proteins (soy proteins, wheat gluten, zein, algal proteins, mycoproteins, pulses, potato, oilseeds, pseudo-cereals, and grass) and their suitability for meat analog production. The review also discusses other associated aspects such as processing interventions that can be adapted to improve the functional and textural attributes of proteins in the processing of meat analogs (extrusion, spinning, Couette shear cell, additive manufacturing/3D printing, and freeze structuring). '.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Muideen Adewale Ahmed
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Akhilesh K. Verma
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Pramila Umaraw
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Ahmed Abubakar Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
26
|
Legume Protein Extracts: The Relevance of Physical Processing in the Context of Structural, Techno-Functional and Nutritional Aspects of Food Development. Processes (Basel) 2022. [DOI: 10.3390/pr10122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Legumes are sustainable protein-rich crops with numerous industrial food applications, which give them the potential of a functional food ingredient. Legume proteins have appreciable techno-functional properties (e.g., emulsification, foaming, water absorption), which could be affected along with its digestibility during processing. Extraction and isolation of legumes’ protein content makes their use more efficient; however, exposure to the conditions of further use (such as temperature and pressure) results in, and significantly increases, changes in the structural, and therefore functional and nutritional, properties. The present review focuses on the quality of legume protein concentrates and their changes under the influence of different physical processing treatments and highlights the effect of processing techniques on the structural, functional, and some of the nutritional, properties of legume proteins.
Collapse
|
27
|
Structural Characteristics and Emulsifying Properties of Soy Protein Isolate Glycated with Galacto-Oligosaccharides under High-Pressure Homogenization. Foods 2022; 11:foods11213505. [PMID: 36360117 PMCID: PMC9656766 DOI: 10.3390/foods11213505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
This study explored the Maillard reaction process during the glycation of soy protein isolate (SPI) with galacto-oligosaccharides (GOSs) under high-pressure homogenization (HPH) and its effects on the emulsifying properties of SPI. SPI-GOS glycation under moderate pressure (80 MPa) significantly inhibited the occurrence and extent of the Maillard reaction (p < 0.05), but homogenization pressures in the range of 80−140 MPa gradually promoted this reaction. HPH caused a decrease in the surface hydrophobicity of the glycated protein, an increase in the abundance of free sulfhydryl groups, unfolding of the protein molecular structure, and the formation of new covalent bonds (C=O, C=N). Additionally, the particle size of emulsions created with SPI-GOS conjugates was reduced under HPH, thus improving the emulsifying properties of SPI. A reduction in particle size (117 nm), enhanced zeta potential (−23 mV), and uniform droplet size were observed for the emulsion created with the SPI-GOS conjugate prepared at 120 MPa. The conformational changes in the glycated protein supported the improved emulsification function. All results were significantly different (p < 0.05). The study findings indicate that HPH provides a potential method for controlling glycation and improving the emulsifying properties of SPI.
Collapse
|
28
|
Sahil, Madhumita M, Prabhakar PK, Kumar N. Dynamic high pressure treatments: current advances on mechanistic-cum-transport phenomena approaches and plant protein functionalization. Crit Rev Food Sci Nutr 2022; 64:2734-2759. [PMID: 36190514 DOI: 10.1080/10408398.2022.2125930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dynamic high pressure treatment (DHPT) either by high pressure homogenization or microfluidisation, is an emerging concept used in the food industry for new products development through macromolecules modifications in addition to simple mixing and emulsification action. Mechanistic understanding of droplets breakup during high pressure homogenization is used to understand how these compact and high molecular weight-sized globular plant proteins are affected during DHPTs. Plant protein needs to be functionalized for advanced use in food formulation. DHPTs brought changes in plant proteins' secondary, tertiary, and quaternary structures through alterations in intermolecular and intramolecular interactions, sulfhydryl groups, and disulfide bonds. These structural changes in plant proteins affected their functional and physicochemical properties like solubility, oil and water holding capacity, gelation, emulsification, foaming, and rheological properties. These remarkable changes made utilization of this concept in novel food system applications like in plant-based dairy analogues. Overall, this review provides a comprehensive and critical understanding of DHPTs on their mechanistic and transport approaches for droplet breakup, structural and functional modification of plant macromolecules. This article also explores the potential of DHPT for formulating plant-based dairy analogues to meet healthy and sustainable food consumption needs. HIGHLIGHTSIt critically reviews high pressure homogenization (HPH) and microfluidisation (DHPM).It explores the mechanistic and transport phenomena approaches of HPH and DHPMHPH and DHPM can induce conformational and structural changes in plant proteins.Improvement in the functional properties of HPH and DHPM treated plant proteins.HPH and DHPM are potentially applicable for plant based dairy alternatives food system.
Collapse
Affiliation(s)
- Sahil
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, HR, India
| | - Mitali Madhumita
- Department of Food Technology, School of Health Science and Technology, University of Petroleum and Energy Studies, Dehradun, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, HR, India
| | - Nitin Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonepat, HR, India
| |
Collapse
|
29
|
Ong KS, Chiang JH, Sim SYJ, Liebl D, Madathummal M, Henry CJ. Functionalising insoluble pea protein aggregates using high-pressure homogenisation: Effects on physicochemical, microstructural and functional properties. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Yang XY, Shi LS, Gong T, Hu CY, Guo YR, Meng YH. Structural modification induced by heat treatments improves the emulsifying attributes of lacquer seed protein isolate. Int J Biol Macromol 2022; 222:1700-1708. [PMID: 36179870 DOI: 10.1016/j.ijbiomac.2022.09.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
Abstract
The lacquer seed oil has received extensive attention in the food industry due to its health function, such as regulating blood lipids. But its by-product, lacquer seed meal, is often used as a low-value-added product such as animal feed. Lacquer seed meal contains about 20 % protein, which has amphiphilic properties, and there is limited attention to its emulsifying properties. In this study, the impact of heat treatment on the emulsifying properties of lacquer seed protein isolate (LSPI) was investigated. The EAI and ESI of the 120 °C heated LSPI increased by 77.1 % and 55.2 %, respectively. The emulsions prepared using heat-modified LSPI (120 °C) further showed lower hydroperoxide, TBARS and protein carbonyl contents (only 61.3 %, 61.0 % and 58.6 % of control) after storage. This result indicates that heat-treated LSPI retarded lipid and protein oxidation in LSPI-stabilized emulsions during storage. Changes in protein structure showed that increasing heating temperature resulted in the depolymerization of tertiary structure, higher surface hydrophobicity and lower contents of α-helix of LSPI. These changes in protein structure made the heated LSPIs have better emulsifying properties. Therefore, these findings developed a new use of LSPI and greatly enhanced the potential of LSPI as a natural emulsifier in the food industry.
Collapse
Affiliation(s)
- Xue Yan Yang
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| | - Lin Shan Shi
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| | - Tian Gong
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Yu Rong Guo
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| |
Collapse
|
31
|
Yang Y, Sun SH, Zou L, Wang B, Bian X, Zhu PY, Ren LK, Shi YG, Zhang N. Characterization of structural and functional properties of soybean 11S globulin during the renaturation after the guanidine hydrochloride denaturation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Rojas ML, Kubo MT, Miano AC, Augusto PE. Ultrasound processing to enhance the functionality of plant-based beverages and proteins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Sridhar K, Bouhallab S, Croguennec T, Renard D, Lechevalier V. Application of high-pressure and ultrasound technologies for legume proteins as wall material in microencapsulation: New insights and advances. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Hu W, Wu Y, Chen H, Gao J, Tong P. Effects of Glucose and Homogenization Treatment on the Quality of Liquid Whole Eggs. Foods 2022; 11:2521. [PMID: 36010521 PMCID: PMC9407130 DOI: 10.3390/foods11162521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
To investigate the effect of glucose on the protein structure, physicochemical and processing properties of liquid whole eggs (LWE) under homogenization, different concentrations of glucose (0.01, 0.02, 0.04, 0.08 g/mL) were added into LWE, followed by homogenizing at different pressures (5, 10, 20, 40 MPa), respectively. It was shown that the particle size and turbidity of LWE increased with the increase in glucose concentration while decreasing with the increase in homogenization pressure. The protein unfolding was increased at a low concentration of glucose combined with homogenization, indicating a 40.33 ± 5.57% and 165.72 ± 33.57% increase in the fluorescence intensity and surface hydrophobicity under the condition of 0.02 g/mL glucose at 20 MPa, respectively. Moreover, the remarkable increments in foaming capacity, emulsifying capacity, and gel hardness of 47.57 ± 5.1%, 66.79 ± 9.55%, and 52.11 ± 9.83% were recorded under the condition of 0.02 g/mL glucose at 20 MPa, 0.04 g/mL glucose at 20 MPa, and 0.02 g/mL glucose at 40 MPa, respectively. Reasonably, glucose could improve the processing properties of LWE under homogenization, and 0.02 g/mL-0.04 g/mL and 20-40 MPa were the optimal glucose concentration and homogenization pressure. This study could contribute to the production of high-performance and stable quality of LWE.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
35
|
Theóphilo Galvão AMM, Vélez-Erazo EM, Karatay GGB, de Figueiredo Furtado G, Vidotto DC, Tavares GM, Hubinger MD. High Internal Phase Emulsions Stabilized By The Lentil Protein Isolate (Lens Culinaris). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Luo L, Wang Z, Deng Y, Wei Z, Zhang Y, Tang X, Liu G, Zhou P, Zhao Z, Zhang M, Li P. High-pressure homogenization: A potential technique for transforming insoluble pea protein isolates into soluble aggregates. Food Chem 2022; 397:133684. [PMID: 35901613 DOI: 10.1016/j.foodchem.2022.133684] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/04/2022]
Abstract
High-pressure homogenization (HPH) is a technique that impacts the aggregation of globular proteins. In this study, the effect of HPH (at a pressure of 30/50 MPa for three cycles) was investigated on the aggregation states and functional properties of insoluble commercial pea protein isolates (CPPI). Results showed that HPH significantly improved the solubility, foaming and emulsifying capacity of CPPI. Samples treated at 50 MPa demonstrated better foaming and emulsifying capacity than that at 30 MPa. Surface hydrophobicity, intrinsic fluorescence, SDS-PAGE and FTIR analysis revealed that insoluble precipitates/aggregates (most legumins included) of CPPI were broken down and converted into soluble aggregates. Low-pressure HPH (30 MPa) can break non-covalent bonds (hydrophobic interactions), whereas higher pressure (50 MPa) can further break covalent bonds (SS). The study sheds light on the mechanism of disruption of insoluble CPPI under HPH and proposes a method to enhance their techno-functional properties for application in food formulations.
Collapse
Affiliation(s)
- Lijuan Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhiming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhencheng Wei
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaojun Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Pengfei Zhou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhihao Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
37
|
Calligaris S, Moretton M, Melchior S, Mosca AC, Pellegrini N, Anese M. Designing food for the elderly: the critical impact of food structure. Food Funct 2022; 13:6467-6483. [PMID: 35678510 DOI: 10.1039/d2fo00099g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is an unavoidable progressive process causing many changes of the individual life. However, if faced in an efficient way, living longer in a healthy status could be an opportunity for all. In this context, food consumption and dietary patterns are pivotal factors in promoting active and healthy ageing. The development of food products tailored for the specific needs of the elderly might favour the fulfilment of nutritionally balanced diets, while reducing the consequences of malnutrition. To this aim, the application of a food structure design approach could be particularly profitable, being food structure responsible to the final functionalities of food products. In this narrative review, the physiological changes associated to food consumption occurring during ageing were firstly discussed. Then, the focus shifted to the possible role of food structure in delivering target functionalities, considering food acceptability, digestion of the nutrients, bioactive molecules and probiotic bacteria.
Collapse
Affiliation(s)
- Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Ana Carolina Mosca
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
38
|
Wu J, Xu S, Yan X, Zhang X, Xu X, Li Q, Ye J, Liu C. Effect of Homogenization Modified Rice Protein on the Pasting Properties of Rice Starch. Foods 2022; 11:foods11111601. [PMID: 35681350 PMCID: PMC9180377 DOI: 10.3390/foods11111601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 01/21/2023] Open
Abstract
Modification of plant-based protein for promoting wide applications is of interest to the food industry. Rice protein from rice residues was modified by homogenization, and its effect on pasting properties (including gelatinization and rheology) of rice starch was investigated. The results showed that homogenization could significantly decrease the particle size of rice protein and increase their water holding capacity without changing their band distribution in SDS-PAGE. With the addition of protein/homogenized proteins into rice starch decreased peak viscosity of paste. The homogenized proteins decreased breakdown and setback value when compared with that of original protein, indicating homogenized protein might have potential applications for increasing the stability and inhibiting short-term retrogradation of starch paste. The addition of protein/homogenized proteins resulted in a reduction in the viscoelasticity behavior of starch paste. These results indicate that homogenization would create a solution to alter the physicochemical properties of plant proteins, and the homogenized proteins may be a potential candidate for development of protein-rich starchy products.
Collapse
Affiliation(s)
- Jianyong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (J.W.); (S.X.); (X.Y.); (X.Z.); (C.L.)
| | - Shunqian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (J.W.); (S.X.); (X.Y.); (X.Z.); (C.L.)
| | - Xiaoyan Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (J.W.); (S.X.); (X.Y.); (X.Z.); (C.L.)
| | - Xuan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (J.W.); (S.X.); (X.Y.); (X.Z.); (C.L.)
| | - Xingfeng Xu
- Department of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Qian Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China;
| | - Jiangping Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (J.W.); (S.X.); (X.Y.); (X.Z.); (C.L.)
- Correspondence:
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (J.W.); (S.X.); (X.Y.); (X.Z.); (C.L.)
| |
Collapse
|
39
|
Vogelsang-O’Dwyer M, Sahin AW, Arendt EK, Zannini E. Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods 2022; 11:1307. [PMID: 35564030 PMCID: PMC9104109 DOI: 10.3390/foods11091307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Pulse proteins are being increasingly investigated as nutritious and functional ingredients which could provide alternatives to animal proteins; however, pulse protein ingredients do not always meet the functionality requirements necessary for various applications. Consequently, enzymatic hydrolysis can be employed as a means of improving functional properties such as solubility, emulsifying, foaming, and gelling properties. This review aims to examine the current literature regarding modification of these properties with enzymatic hydrolysis. The effects of enzymatic hydrolysis on the functionality of pulse proteins generally varies considerably based on the enzyme, substrate, processing steps such as heat treatment, degree of hydrolysis, and pH. Differences in protease specificity as well as protein structure allow for a wide variety of peptide mixtures to be generated, with varying hydrophobic and electrostatic properties. Typically, the most significant improvements are seen when the original protein ingredient has poor initial functionality. Solubility is usually improved in the mildly acidic range, which may also correspond with improved foaming and emulsifying properties. More work should be carried out on the potential of enzymatic hydrolysis to modify gelation properties of pulse proteins, as the literature is currently lacking. Overall, careful selection of proteases and control of hydrolysis will be necessary to maximize the potential of enzymatic hydrolysis as a tool to improve pulse protein functionality and broaden the range of potential applications.
Collapse
Affiliation(s)
- Martin Vogelsang-O’Dwyer
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (M.V.-O.); (A.W.S.); (E.Z.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (M.V.-O.); (A.W.S.); (E.Z.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (M.V.-O.); (A.W.S.); (E.Z.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (M.V.-O.); (A.W.S.); (E.Z.)
| |
Collapse
|
40
|
Impact of high-pressure homogenization on physico-chemical, structural, and rheological properties of quinoa protein isolates. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Gallo V, Romano A, Miralles B, Ferranti P, Masi P, Santos-Hernández M, Recio I. Physicochemical properties, structure and digestibility in simulated gastrointestinal environment of bread added with green lentil flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Melchior S, Moretton M, Calligaris S, Manzocco L, Nicoli MC. High pressure homogenization shapes the techno-functionalities and digestibility of pea proteins. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Zhang R, Cheng L, Luo L, Hemar Y, Yang Z. Formation and characterisation of high-internal-phase emulsions stabilised by high-pressure homogenised quinoa protein isolate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Bautista-Expósito S, Vandenberg A, Peñas E, Frias J, Martínez-Villaluenga C. Lentil and Fava Bean With Contrasting Germination Kinetics: A Focus on Digestion of Proteins and Bioactivity of Resistant Peptides. FRONTIERS IN PLANT SCIENCE 2021; 12:754287. [PMID: 34759946 PMCID: PMC8575454 DOI: 10.3389/fpls.2021.754287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 05/03/2023]
Abstract
Germination offers advantages to improve legume protein digestibility as it disintegrates seed structure and hydrolyzes proteins and anti-nutrients. Seed permeability (related to polyphenol content of seed coats) is an important factor affecting the duration of seed germination and its impact on protein digestibility and bioactivity. The objective was to compare the effect of seed germination on protease activity, structure, and proteolysis of four selected legumes with contrasting seed coat polyphenol profiles (gray zero-tannin lentil [GZL], beluga lentil [BL], and dehulled red lentil [DL]; and zero tannin/low vicine-convicine fava bean [ZF]). Protein hydrolysis was characterized during germination and digestion with respect to proteins, peptides, and free amino acids (FAAs). In vitro antihypertensive and antioxidant activities of digests were investigated, and the peptidomic characterization [high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS)] and identification of bioactive fragments in intestinal digests were performed. Regardless of the seed type, germination increased protease activity and reduced the levels of phytic acid, trypsin inhibitors, and tannins (only in BL). A significant proteolysis of the 7S and 11S globulins and a concomitant increase of peptides and FAAs were observed in all sprouted legumes. Digestion kinetics in sprouts revealed a faster generation of FAAs and peptides than in dry seeds, with changes being more evident for DL, associated with a faster imbibition, germination, and sprout growth. In contrast, BL sprouts showed the lowest protein digestibility, likely due to a lower protease activity, seed structure disintegration, and higher anti-nutrient levels in comparison to GZL, DL, and ZF. Moreover, the digestion of sprouts resulted in a higher number of resistant peptides in DL and ZF that matched with previously reported bioactive sequences, suggesting a promising health potential of legume sprouts that was confirmed in vitro. The results suggested that the germination process improved protein digestibility and the health-promoting potential of lentil and fava bean proteins although these changes were more evident in DL due to its rapid imbibition, faster germination, and sprout development. This study will provide important information for either plant breeders to develop legume varieties with permeable seed coats or food producers that could use dehulled seeds for efficient production of sprouts as sustainable food sources of plant proteins with improved nutritional and healthy properties.
Collapse
Affiliation(s)
- Sara Bautista-Expósito
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Albert Vandenberg
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| |
Collapse
|
46
|
Effects of high-pressure homogenization on structural and emulsifying properties of thermally soluble aggregated kidney bean (Phaseolus vulgaris L.) proteins. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106835] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Li J, Zhai J, Gu L, Su Y, Gong L, Yang Y, Chang C. Hen egg yolk in food industry - A review of emerging functional modifications and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Sim SYJ, SRV A, Chiang JH, Henry CJ. Plant Proteins for Future Foods: A Roadmap. Foods 2021; 10:1967. [PMID: 34441744 PMCID: PMC8391319 DOI: 10.3390/foods10081967] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Protein calories consumed by people all over the world approximate 15-20% of their energy intake. This makes protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute adequate protein to feed over nine billion people by 2050, in an environmentally sustainable and affordable way. Plant-based proteins present a promising solution to our nutritional needs due to their long history of crop use and cultivation, lower cost of production, and easy access in many parts of the world. However, plant proteins have comparatively poor functionality, defined as poor solubility, foaming, emulsifying, and gelling properties, limiting their use in food products. Relative to animal proteins, including dairy products, plant protein technology is still in its infancy. To bridge this gap, advances in plant protein ingredient development and the knowledge to construct plant-based foods are sorely needed. This review focuses on some salient features in the science and technology of plant proteins, providing the current state of the art and highlighting new research directions. It focuses on how manipulating plant protein structures during protein extraction, fractionation, and modification can considerably enhance protein functionality. To create novel plant-based foods, important considerations such as protein-polysaccharide interactions, the inclusion of plant protein-generated flavors, and some novel techniques to structure plant proteins are discussed. Finally, the attention to nutrition as a compass to navigate the plant protein roadmap is also considered.
Collapse
Affiliation(s)
- Shaun Yong Jie Sim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Akila SRV
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Jie Hong Chiang
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
50
|
Romano A, Gallo V, Ferranti P, Masi P. Lentil flour: nutritional and technological properties, in vitro digestibility and perspectives for use in the food industry. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|