1
|
Ghasempour A, Naderi Allaf MR, Charoghdoozi K, Dehghan H, Mahmoodabadi S, Bazrgaran A, Savoji H, Sedighi M. Stimuli-responsive carrageenan-based biomaterials for biomedical applications. Int J Biol Macromol 2024; 291:138920. [PMID: 39706405 DOI: 10.1016/j.ijbiomac.2024.138920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Carrageenan-based biomaterials have attracted considerable attention in recent years due to their unique biological properties, including their biodegradability, compatibility, and lack of adverse effects. These biomaterials exhibit a variety of beneficial properties, such as antiviral, antitumor, and immunomodulatory effects, which set them apart from other polysaccharides. Stimuli-responsive carrageenan-based biomaterials have attracted particular attention due to their unique properties, such as reducing systemic toxicity and controlling drug release. In this review, a comprehensive investigation of stimuli-responsive carrageenan-based biomaterials was conducted under the influence of various stimuli such as pH, electric field, magnetic field, temperature, light, and ions. These structures exhibited good stimulus-responsive properties and involved corresponding physical and chemical changes, such as changes in swelling ratio and gelling power among others. The biomedical application of carrageenan-based stimuli-responsive biomaterials in the field of tissue engineering, anticancer, antibacterial, and food monitoring has been investigated, showing the great potential of these structures. Although there are promising developments in the design and use of stimuli-responsive carrageenan-based biomaterials, further research is advisable to further investigate their potential applications, particularly in animal models. Extensive studies are needed to investigate the benefits and limitations of these materials to ensure their safety and effective use in biomedical applications.
Collapse
Affiliation(s)
- Alireza Ghasempour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Naderi Allaf
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Dehghan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Bazrgaran
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada; Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada.
| | - Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
2
|
Yang L, Yuan QY, Lou CW, Lin JH, Li TT. Recent Advances of Cellulose-Based Hydrogels Combined with Natural Colorants in Smart Food Packaging. Gels 2024; 10:755. [PMID: 39727513 DOI: 10.3390/gels10120755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Due to the frequent occurrence of food safety problems in recent years, healthy diets are gradually receiving worldwide attention. Chemical pigments are used in smart food packaging because of their bright colors and high visibility. However, due to shortcomings such as carcinogenicity, people are gradually looking for natural pigments to be applied in the field of smart food packaging. In traditional smart food packaging, the indicator and the packaging bag substrate have different degrees of toxicity. Smart food packaging that combines natural colorants and cellulose-based hydrogels is becoming more and more popular with consumers for being natural, non-toxic, environmentally friendly, and renewable. This paper reviews the synthesis methods and characteristics of cellulose-based hydrogels, as well as the common types and characteristics of natural pigments, and discusses the application of natural colorants and cellulose-based hydrogels in food packaging, demonstrating their great potential in smart food packaging.
Collapse
Affiliation(s)
- Lan Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qian-Yu Yuan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ching-Wen Lou
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Jia-Horng Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Ting-Ting Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| |
Collapse
|
3
|
Sabu Mathew S, Jaiswal AK, Jaiswal S. Carrageenan-based sustainable biomaterials for intelligent food packaging: A review. Carbohydr Polym 2024; 342:122267. [PMID: 39048183 DOI: 10.1016/j.carbpol.2024.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 07/27/2024]
Abstract
This article explores the use of carrageenan-based biomaterials in developing sustainable and efficient intelligent food packaging solutions. The research in this field has seen a notable surge, evident from >1000 entries in databases such as Web of Science, PubMed and Science Direct between 2018 and 2023. Various film preparation techniques are explored, including solvent casting, layer-by-layer (LbL) assembly, and electrospinning. Solvent casting is commonly used to incorporate active compounds, while LbL assembly and electrospinning are favored for enhancing mechanical properties and solubility. Carrageenan's film-forming characteristics enable the production of transparent films, ideal for indicator films that facilitate visual inspection for color changes indicative of pH variations, crucial for detecting food spoilage. Surface properties can be modified using additives like plant extracts to regulate moisture interaction, affecting shelf life and food safety. These materials' antioxidant and antimicrobial attributes are highlighted, demonstrating their efficacy against pathogens such as E. coli.
Collapse
Affiliation(s)
- Sneha Sabu Mathew
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| |
Collapse
|
4
|
Yan ZH, Dou RR, Wei F, Yang JH, Cui S, Sun MJ, Kang CY, Zhao CQ. Effects of eugenol on physicochemical properties of sturgeon skin collagen-chitosan composite membrane. J Food Sci 2024; 89:4032-4046. [PMID: 38778552 DOI: 10.1111/1750-3841.17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
In this study, a series of collagen-chitosan-eugenol (CO-CS-Eu) flow-casting composite films were prepared using collagen from sturgeon skin, chitosan, and eugenol. The physicochemical properties, mechanical properties, microstructure, as well as antioxidant and antimicrobial activities of the composite membranes were investigated by various characterization techniques. The findings revealed that the inclusion of eugenol augmented the thickness of the film, darkened its color, reduced the transparency, and enhanced the ultraviolet light-blocking capabilities, with the physicochemical properties of the CO-CS-0.25%Eu film being notably favorable. Eugenol generates increasingly intricate matrices that disperse within the system, thereby modifying the optical properties of the material. Furthermore, the tensile strength of the film decreased from 70.97 to 20.32 MPa, indicating that eugenol enhances the fluidity and ductility of the film. Added eugenol also exhibited structural impact by loosening the film cross-section and decreasing its density. The Fourier transform infrared spectroscopy results revealed the occurrence of several intermolecular interactions among collagen, chitosan, and eugenol. Moreover, the incorporation of eugenol bolstered the antioxidant and antimicrobial capabilities of the composite film. This is primarily attributed to the abundant phenolic/hydroxyl groups present in eugenol, which can react with free radicals by forming phenoxy groups and neutralizing hydroxyl groups. Consequently, inclusion of eugenol substantially enhances the freshness retention performance of the composite film. PRACTICAL APPLICATION: ● The CO-CS-Eu film utilizes collagen from sturgeon skin, improving the use of sturgeon resources.● Different concentrations of eugenol altered its synergistic effect with chitosan.● The CO-CS-Eu film is composed of natural products with safe and edible properties.
Collapse
Affiliation(s)
- Zi-Heng Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Rong-Rong Dou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Fang Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Jia-Hua Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Shan Cui
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Mei-Jun Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Chun-Yu Kang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Chun-Qing Zhao
- Department of Continuing Education, Baoding Open University, Baoding, P. R. China
| |
Collapse
|
5
|
Liu W, Ning Y, Yun Y, Wei N, Pan Z, Wang L. Development of pH-responsive intelligent films based on κ-carrageenan/straw lignin and anthocyanin from Padus virginiana peel for real-time monitoring of chicken. Int J Biol Macromol 2024; 270:132464. [PMID: 38772469 DOI: 10.1016/j.ijbiomac.2024.132464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
A series of intelligent films with pH-responsive properties were prepared using Padus virginiana peel extract (PVE) as a smart response factor, κ-carrageenan (κC) as a matrix, and complexed with rice straw lignin (SL). Following the addition of 5 mL PVE at a concentration of 430.99 mg/L, tensile strength and elongation at break of the films increased to a maximum value of 21.25 ± 0.75 MPa and 24.04 ± 0.69 %, respectively. The water vapour permeability of the films decreased with increasing PVE addition, and the minimum value was 5.85 ± 0.09 × 10-11 g m-1 s-1 Pa-1. All the films had favourable thermal stability, transparency, haze and antioxidant properties. PVE-containing films all exhibited excellent pH and ammonia response properties. The higher the humidity of the environment, the faster the ammonia response, and the films were capable of rapid discoloration at 75 % relative humidity. κC/SL-PVE5 can be used to monitor the freshness of chicken breast meat. When the total volatile basic nitrogen of chicken breast meat was increased to 14.27 mg/100 g, κC/SL-PVE5 changed from pink to greyish-yellow. In conclusion, κC/SL-PVE intelligent films hold great promise for real-time monitoring of meat freshness.
Collapse
Affiliation(s)
- Wenhua Liu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Yuping Ning
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Yalu Yun
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Na Wei
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Zijing Pan
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
6
|
Guo B, Sun Y, Guan Q, Luo Z, Zhou L, Xu Z, Han J, Qu D. Fabrication and characterization of sodium alginate/blueberry anthocyanins/hinokitiol loaded ZIF-8 nanoparticles composite films with antibacterial activity for monitoring pork freshness. Food Chem 2024; 440:138200. [PMID: 38142553 DOI: 10.1016/j.foodchem.2023.138200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
A smart film was developed to detect the freshness of pork by incorporating blueberry anthocyanins (BAs) and hinokitiol (HIN) loaded zeolite-imidazolium framework (HIN@ZIF-8) with into a sodium alginate matrix, and its microstructure and physicochemical properties were studied. The SA matrix was doped with BAs and HIN@ZIF-8 nanoparticles (SA-BAs/HIN@ZIF-8) to increase its tensile strength and reduce its water vapor permeability. HIN@ZIF-8 has low cytotoxicity, and SA-BAs/HIN@ZIF-8 membranes have long-lasting antimicrobial and highly sensitive color development properties against Escherichia coli and Staphylococcus aureus. The results of pork preservation experiments showed that SA-BA/HIN@ZIF-8 could extend the shelf life of pork to 6 days at 4 ℃. E-nose evaluation experiments showed that SA-BAs/HIN@ZIF-8 could inhibit compounds that cause unpleasant and irritating odours. Therefore, SA-BAs/HIN@ZIF-8 was considered to be an effective method to improve the freshness of pork, and the results showed that it has a promising application in food preservation.
Collapse
Affiliation(s)
- Bohai Guo
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yun Sun
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qiuyue Guan
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Zheng Luo
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Lian Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Zhenlan Xu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
7
|
Avila LB, Schnorr C, Silva LFO, Morais MM, Moraes CC, da Rosa GS, Dotto GL, Lima ÉC, Naushad M. Trends in Bioactive Multilayer Films: Perspectives in the Use of Polysaccharides, Proteins, and Carbohydrates with Natural Additives for Application in Food Packaging. Foods 2023; 12:foods12081692. [PMID: 37107487 PMCID: PMC10137676 DOI: 10.3390/foods12081692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 04/29/2023] Open
Abstract
The harmful effects on the environment caused by the indiscriminate use of synthetic plastics and the inadequate management of post-consumer waste have given rise to efforts to redirect this consumption to bio-based economic models. In this sense, using biopolymers to produce materials is a reality for food packaging companies searching for technologies that allow these materials to compete with those from synthetic sources. This review paper focused on the recent trends in multilayer films with the perspective of using biopolymers and natural additives for application in food packaging. Firstly, the recent developments in the area were presented concisely. Then, the main biopolymers used (gelatin, chitosan, zein, polylactic acid) and main methods for multilayer film preparation were discussed, including the layer-by-layer, casting, compression, extrusion, and electrospinning methods. Furthermore, we highlighted the bioactive compounds and how they are inserted in the multilayer systems to form active biopolymeric food packaging. Furthermore, the advantages and drawbacks of multilayer packaging development are also discussed. Finally, the main trends and challenges in using multilayer systems are presented. Therefore, this review aims to bring updated information in an innovative approach to current research on food packaging materials, focusing on sustainable resources such as biopolymers and natural additives. In addition, it proposes viable production routes for improving the market competitiveness of biopolymer materials against synthetic materials.
Collapse
Affiliation(s)
- Luisa Bataglin Avila
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Carlos Schnorr
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55-66, Barranquilla 080002, Atlantico, Colombia
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55-66, Barranquilla 080002, Atlantico, Colombia
| | - Marcilio Machado Morais
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bage 96413-172, Rio Grande do Sul, Brazil
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bage 96413-172, Rio Grande do Sul, Brazil
| | - Gabriela Silveira da Rosa
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bage 96413-172, Rio Grande do Sul, Brazil
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bage 96413-172, Rio Grande do Sul, Brazil
| | - Guilherme L Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Éder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
8
|
Cui C, Gao L, Dai L, Ji N, Qin Y, Shi R, Qiao Y, Xiong L, Sun Q. Hydrophobic Biopolymer-Based Films: Strategies, Properties, and Food Applications. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
9
|
Zhang J, Zhang J, Huang X, Shi J, Liu L, Song W, Zhai X, Xiao J, Hashim SBH, Li Z, Zou X, Povey M. A visual bi-layer sensor based on Agar/TiO 2/butterfly bean flower anthocyanin/κ-carrageenan with photostability for monitoring Penaeus chinensis freshness. Int J Biol Macromol 2023; 235:123706. [PMID: 36801306 DOI: 10.1016/j.ijbiomac.2023.123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Visual indicator bi-layer films were manufactured incorporating κ-carrageenan, butterfly pea flower anthocyanin, varying Nano‑titanium dioxide (TiO2) content and agar for Penaeus chinensis (Chinese white shrimp) freshness detection. The κ-carrageenan-anthocyanin (CA) layer served as indicator, while the TiO2-agar (TA) layer functioned as the protective layer to improve the photostability of film. The bi-layer structure was characterized by scanning electron microscopy (SEM). The TA2-CA film had the best tensile strength with a value of 17.8 MPa and the lowest water vapor permeability (WVP) value of bi-layer films was 2.98 × 10-7 g.m-1.h-1.pa-1. The bi-layer film protected anthocyanin against exudation when immersed in aqueous solution of varying pH. The TiO2 particles filled the pores of the protective layer, increasing the opacity from 1.61 up to 4.49 significantly improving the photostability with a consequent slight color change under illumination of UV/visible light. Under UV irradiation, the TA2-CA film had no significant color change with a ΔE value of 4.23. Finally, the TA2-CA films showed an obvious color change from blue to yellow green in the early stages of Penaeus chinensis putrefaction (≤48 h) then the color change and Penaeus chinensis freshness were well correlated (R2 = 0.8739).
Collapse
Affiliation(s)
- Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianing Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Li Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenjun Song
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianbo Xiao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Sulafa B H Hashim
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Megan Povey
- School of Food Science and Nutrition, the University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
10
|
Developing strong and tough cellulose acetate/ZIF67 intelligent active films for shrimp freshness monitoring. Carbohydr Polym 2023; 302:120375. [PMID: 36604053 DOI: 10.1016/j.carbpol.2022.120375] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
There is a growing demand for the development of intelligent active packaging films to maintain and monitor the freshness of meat food. Herein, nano Co-based MOF (ZIF67) with ammonia-sensitive and antimicrobial functions was successfully synthesized and then integrated into cellulose acetate (CA) matrix to prepare intelligent active films. The impacts of ZIF67 incorporation on the structure, physical and functional characteristics of CA film were fully investigated. The results demonstrated that the ZIF67 nanofillers were evenly dispersed in CA matrix, resulting in remarkable improvement on tensile strength, toughness, thermal stability, UV barrier, hydrophobicity and water vapor barrier ability of CA film. Furthermore, the prepared CA/ZIF67 films exhibited superb antimicrobial and ammonia-sensitive functions. The CA/ZIF67 intelligent films turned their color from blue at beginning to brown during progressive spoilage of shrimp. These results revealed that the CA/ZIF67 films with excellent antimicrobial and ammonia-sensitive functions could be applied in intelligent active food packaging.
Collapse
|
11
|
Chi W, Liu W, Li J, Wang L. Simultaneously realizing intelligent color change and high haze of κ-carrageenan film by incorporating black corn seed powder for visually monitoring pork freshness. Food Chem 2023; 402:134257. [DOI: 10.1016/j.foodchem.2022.134257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
|
12
|
A new strategy to glue-seal κ-carrageenan film for packaging grease. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
XU H, SHI Y, GAO L, SHI N, YANG J, HAO R. Preparation and characterization of PH-responsive polyvinyl alcohol/chitosan/anthocyanin films. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.98022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Ying SHI
- North University of China, China
| | - Li GAO
- North University of China, China
| | - Nan SHI
- North University of China, China
| | | | - Rui HAO
- North University of China, China
| |
Collapse
|
14
|
Kanha N, Osiriphun S, Rakariyatham K, Klangpetch W, Laokuldilok T. On-package indicator films based on natural pigments and polysaccharides for monitoring food quality: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6804-6823. [PMID: 35716018 DOI: 10.1002/jsfa.12076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/12/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Deterioration of food quality and freshness is mainly due to microbial growth and enzyme activity. Chilled fresh food, especially meat and seafood, as well as pasteurized products, rapidly lose quality and freshness during packing, distribution and storage. Real-time food quality monitoring using on-package indicator films can help consumers make informed purchasing decisions. Interest in the use of intelligent packaging systems for monitoring safety and food quality has increased in recent years. Polysaccharide-based films can be developed into on-package indicator films due to their excellent film-forming properties and biodegradability. Another important component is the use of colorants with visible color changes at various pH levels. Currently, natural pigments are receiving increased attention because of their safety and environmental friendliness. This review highlights the recent findings regarding the role of natural pigments, the effects of incorporating natural pigments and polysaccharides on properties of indicator film, current application and limitations of on-package indicator films based on polysaccharides in some foods, problems and improvement of physical properties and color conversion of indicator film containing natural pigments, and development of polysaccharide-based pH-responsive films. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nattapong Kanha
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sukhuntha Osiriphun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Kanyasiri Rakariyatham
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Wannaporn Klangpetch
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Thunnop Laokuldilok
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
15
|
Aydogdu Emir A. Development and evaluation of sumac (Rhus coriaria) incorporated guar gum films as colorimetric pH indicator with antioxidant and antimicrobial potential. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Gao L, Liu P, Liu L, Li S, Zhao Y, Xie J, Xu H. κ-carrageenan-based pH-sensing films incorporated with anthocyanins or/and betacyanins extracted from purple sweet potatoes and peels of dragon fruits. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Guo J, Dong S, Ye M, Wu X, Lv X, Xu H, Li M. Effects of Hydroxypropyl Methylcellulose on Physicochemical Properties and Microstructure of κ-Carrageenan Film. Foods 2022; 11:foods11193023. [PMID: 36230097 PMCID: PMC9563755 DOI: 10.3390/foods11193023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
We investigated the effects of different proportions of hydroxypropyl methylcellulose (HPMC) on the properties of κ-carrageenan film. Biodegradable κ-carrageenan/HPMC films (κCHM film) were prepared by the solution casting method and their physicochemical properties were evaluated. The results show that the addition of HPMC enhanced oxygen barrier capacity, mechanical properties (tensile strength and elongation at break) and thermal stability. Notably, when the addition of HPMC increased to 6% of κ-carrageenan (w:w), the κCHM-6 film not only effectively improved water resistance, including lower water solubility, water vapor permeability and higher water contact angle, but also made the structure of the κCHM-6 film more compact. Moreover, rheological measurement and atomic force microscopy characterization showed that κ-carrageenan had suitable compatibility with HPMC. Attenuated total reflection–Fourier transform infrared spectroscopy analysis further confirmed the enhancement of hydrogen bond interactions. This finding could contribute to promoting the potential application of κCHM film in food packaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mei Li
- Correspondence: ; Tel.: +86-151-2931-8871
| |
Collapse
|
18
|
Cheng C, Chen S, Su J, Zhu M, Zhou M, Chen T, Han Y. Recent advances in carrageenan-based films for food packaging applications. Front Nutr 2022; 9:1004588. [PMID: 36159449 PMCID: PMC9503319 DOI: 10.3389/fnut.2022.1004588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022] Open
Abstract
In order to solve the increasingly serious environmental problems caused by plastic-based packaging, carrageenan-based films are drawing much attentions in food packaging applications, due to low cost, biodegradability, compatibility, and film-forming property. The purpose of this article is to present a comprehensive review of recent developments in carrageenan-based films, including fabrication strategies, physical and chemical properties and novel food packaging applications. Carrageenan can be extracted from red algae mainly by hydrolysis, ultrasonic-assisted and microwave-assisted extraction, and the combination of multiple extraction methods will be future trends in carrageenan extraction methods. Carrageenan can form homogeneous film-forming solutions and fabricate films mainly by direct coating, solvent casting and electrospinning, and mechanism of film formation was discussed in detail. Due to the inherent limitations of the pure carrageenan film, physical and chemical properties of carrageenan films were enhanced by incorporation with other compounds. Therefore, carrageenan-based films can be widely used for extending the shelf life of food and monitoring the food freshness by inhibiting microbial growth, reducing moisture loss and the respiration, etc. This article will provide useful guidelines for further research on carrageenan-based films.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan, China
| | - Jiaqi Su
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Zhu
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Mingrui Zhou
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Tianming Chen
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Yahong Han
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ghasemlou M, Ariffin F, Singh Z, Al-Hassan A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Smart films fabricated from natural pigments for measurement of total volatile basic nitrogen (TVB-N) content of meat for freshness evaluation: A systematic review. Food Chem 2022; 396:133674. [PMID: 35905557 DOI: 10.1016/j.foodchem.2022.133674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 12/31/2022]
Abstract
Major databases were searched from January 2012 to August 2021 and 54 eligible studies were included in the meta-analysis to estimate the overall mean of total volatile basic nitrogen (TVB-N) in meat. The mean of TVB-N was 24.96 mg/100 g (95 % CI:23.10-26.82). The pooled estimate of naphthoquinone, curcumin, anthocyanins, alizarin and betalains were 25.98 mg/100 g (95 %CI:19.63-32.33), 30.03 mg/100 g (95 %CI: 24.15-35.91), 24.92 mg/100 g (95 %CI: 22.55-27.30), 23.37 mg/100 g (95 %CI:19.42-27.33) and 19.50 mg/100 g (95 %CI:17.87-21.12), respectively. Meanwhile, subgroups based on meat types showed that smart film was most used in aquatic products at 27.19 mg/100 g (95 %CI:24.97-29.42), followed by red meat at 19.69 mg/100 g (95 %CI:17.44-21.94). Furthermore, 4 °C was the most storage temperature used for testing the performance of smart films at 25.48 mg/100 g (95 %CI:23.05-27.90), followed by storage at 25 °C of 25.65 mg/100 g (95 %CI:22.17-29.13). Substantial heterogeneity was found across the eligible studies (I2 = 99 %, p = 0.00). The results of the trim-and-fill method demonstrated publication bias was well controlled.
Collapse
|
21
|
Development of highly stable color indicator films based on κ-carrageenan, silver nanoparticle and red grape skin anthocyanin for marine fish freshness assessment. Int J Biol Macromol 2022; 216:655-669. [PMID: 35798081 DOI: 10.1016/j.ijbiomac.2022.06.206] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023]
Abstract
Color indicator films for fish freshness were fabricated by incorporating κ-carrageenan (CAR) polymer with red grape skin extract (GSE) as a pH-sensing agent and silver nanoparticles (AgNPs) as an antimicrobial agent. Anthocyanins in GSE exhibited distinguished pH responsive color changes. GSE and AgNPs were well compatible with CAR with intramolecular interactions, approved by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis, thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). GSE-containing films displayed distinguished color changes in response to pH variations and volatile ammonia. Enhanced UV blocking ability and strong antioxidant activity were revealed for GSE included films without sacrificing the physico-chemical properties of the CAR film. Films containing AgNPs showed improved mechanical strength and strong antimicrobial ability against both Escherichia coli and Staphylococcus aureus. The CAR/AgNPs/GSE film displayed a distinctive color change corresponding to changes in the total volatile basic nitrogen (TVB-N) of fish during storage. In addition, the CAR/AgNPs/GSE film showed excellent color stability to consecutive UV exposure and its storage time at 25 °C is expected to be at least 240 days, which indicates that it has high potential as an intelligent food freshness indicator film.
Collapse
|
22
|
Jiang S, Zhang M, Jiang S, Tuo Y, Qian F, Mu G. Transglutaminase and hydroxypropyl methyl cellulose enhance mechanical properties of whey protein concentrate film. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shujuan Jiang
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Mengyuan Zhang
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Shengnan Jiang
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Yanfeng Tuo
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Fang Qian
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Guangqing Mu
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
23
|
|
24
|
Huang J, Hu Z, Li G, Hu L, Chen J, Hu Y. Make your packaging colorful and multifunctional: The molecular interaction and properties characterization of natural colorant-based films and their applications in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Boonsiriwit A, Itkor P, Sirieawphikul C, Lee YS. Characterization of Natural Anthocyanin Indicator Based on Cellulose Bio-Composite Film for Monitoring the Freshness of Chicken Tenderloin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092752. [PMID: 35566103 PMCID: PMC9103511 DOI: 10.3390/molecules27092752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022]
Abstract
Intelligent packaging with indicators that provide information about the quality of food products can inform the consumer regarding food safety and reduce food waste. A solid material for a pH-responsive indicator was developed from hydroxypropyl methylcellulose (HPMC) composited with microcrystalline cellulose (MCC). MCC at 5%, 10%, 20%, and 30% w/w was introduced into the HPMC matrix and the physical, barrier, thermal, and optical properties of the HPMC/MCC bio-composite (HMB) films were analyzed. At 5, 10, and 20% MCC, improved mechanical, transparency, and barrier properties were observed, where HMB with 20% of MCC (H20MB) showed the best performance. Therefore, H20MB was selected as the biodegradable solid material for fabricating Roselle anthocyanins (RA) pH sensing indicators. The performance of the RA-H20MB indicator was evaluated by monitoring its response to ammonia vapor and tracking freshness status of chicken tenderloin. The RA-H20MB showed a clear color change with respect to ammonia exposure and quality change of chicken tenderloin; the color changed from red to magenta, purple and green, respectively. These results indicated that RA-H20MB can be used as a biodegradable pH sensing indicator to determine food quality and freshness.
Collapse
Affiliation(s)
- Athip Boonsiriwit
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (P.I.)
- Rattanakosin International College of Creative Entrepreneurship (RICE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170, Thailand;
| | - Pontree Itkor
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (P.I.)
| | - Chanutwat Sirieawphikul
- Rattanakosin International College of Creative Entrepreneurship (RICE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170, Thailand;
| | - Youn Suk Lee
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (P.I.)
- Correspondence: ; Tel.: +82-33-760-2395
| |
Collapse
|
26
|
Munekata PES, Yilmaz B, Pateiro M, Kumar M, Domínguez R, Shariati MA, Hano C, Lorenzo JM. Valorization of by-products from Prunus genus fruit processing: Opportunities and applications. Crit Rev Food Sci Nutr 2022; 63:7795-7810. [PMID: 35285755 DOI: 10.1080/10408398.2022.2050350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food processing, especially the juice industry, is an important sector that generate million tons of residues every. Due to the increasing concern about waste generation and the interest in its valorization, the reutilization of by-products generated from the processing of popular fruits of the Prunus genus (rich in high-added value compounds) has gained the spotlight in the food area. This review aims to provide an overview of the high added-value compounds found in the residues of Prunus fruits (peach, nectarine, donut peach, plum, cherry, and apricot) processing and applications in the food science area. Collective (pomace) and individual (kernels, peels, and leaves) residues from Prunus fruits processing contains polyphenols (especially flavonoids and anthocyanins), lipophilic compounds (such as unsaturated fatty acids, carotenes, tocopherols, sterols, and squalene), proteins (bioactive peptides and essential amino acids) that are wasted. Applications are increasingly expanding from the flour from the kernels to encapsulated bioactive compounds, active films, and ingredients with technological relevance for the quality of bread, cookies, ice cream, clean label meat products and extruded foods. Advances to increasing safety has also been reported against anti-nutritional (amygdalin) and toxic compounds (aflatoxin and pesticides) due to advances in emerging processing technologies and strategic use of resources.
Collapse
Affiliation(s)
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | | | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, Chartres, France
- Le Studium Institue for Advanced Studies, Orleans, France
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
27
|
Avila LB, Barreto ERC, Moraes CC, Morais MM, da Rosa GS. Promising New Material for Food Packaging: An Active and Intelligent Carrageenan Film with Natural Jaboticaba Additive. Foods 2022; 11:foods11060792. [PMID: 35327215 PMCID: PMC8947434 DOI: 10.3390/foods11060792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 01/06/2023] Open
Abstract
This research focused on the development of active and intelligent films based on a carrageenan biopolymer incorporated with jaboticaba peels extract (JPE). The bioactive extract was obtained by maceration extraction and showed high concentrations of total phenolic content (TP), total anthocyanin (TA), cyanidin-3-glucoside (Cn-3-Glu), antioxidant activity (AA), and microbial inhibition (MI) against E. coli, being promising for use as a natural additive in food packaging. The carrageenan films were produced using the casting technique, incorporating different concentrations of JPE, and characterized. The results of the thickness and Young’s modulus of the film increased in the films supplemented with JPE and the addition of the extract showed a decrease in elongation capacity and tensile strength, in water vapor permeability, and a lower rate of swelling in the water. In addition, the incorporation of JPE into the polymeric matrix promotes a change in the color of the films when compared to the control film and improves the opacity property. This is a positive effect as the material has a UV-vis light barrier which is interesting for food packaging. The increase in the active potential of the films was directly proportional to the concentration of JPE. The films results showed visible changes from purple to brown when in contact with different pH, which means that films have an intelligent potential. Accordingly, this novel carrageenan based-film incorporated with JPE could be a great strategy to add natural additives into packaging material to obtain an active potential and also an indicator for monitoring food in intelligent packaging.
Collapse
Affiliation(s)
- Luisa Bataglin Avila
- Engineering Graduate Program, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
| | - Elis Regina Correa Barreto
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Brazil; (E.R.C.B.); (M.M.M.)
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
| | - Marcilio Machado Morais
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Brazil; (E.R.C.B.); (M.M.M.)
| | - Gabriela Silveira da Rosa
- Engineering Graduate Program, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Brazil; (E.R.C.B.); (M.M.M.)
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
- Correspondence: ; Tel.: +55-53-9996-722-26
| |
Collapse
|
28
|
Hoffmann TG, Angioletti BL, Bertoli SL, de Souza CK. Intelligent pH-sensing film based on jaboticaba peels extract incorporated on a biopolymeric matrix. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1001-1010. [PMID: 35185204 PMCID: PMC8814300 DOI: 10.1007/s13197-021-05104-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Food spoilage is associated with pH change. Thus, the aim of this study was to develop a pH-sensing film based on the addition of anthocyanin extracted from jaboticaba peel to a biopolymeric matrix. UV-Vis spectroscopy analysis of the anthocyanin extract was performed to detect the color change in a broad pH range (1-11). Also, the thermal properties, morphology, moisture content (MC), water solubility (WS), water vapor permeability (WVP) and release test results were examined. The applicability of the pH-sensing film as intelligent packaging was tested by monitoring milk spoilage. Results showed that the film developed has satisfactory thermal stability up to 200 °C. Also, the MC and WVP properties of the film were reduced when the anthocyanin extract was present, 11.5% and 6.5 × 10-10 g H2O Pa- 1 s-1 m-1, respectively, while the WS showed an increase (54.33%). Release tests showed remarkable performance in simulated alcoholic and fatty aqueous foods. The food application test demonstrated the potential use of the anthocyanin-based film as a food quality indicator due to film visual color change ( Δ E >10, after 8 days of milk spoilage monitoring).
Collapse
Affiliation(s)
- Tuany Gabriela Hoffmann
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau, 89030-000 Brazil
| | - Betina Louise Angioletti
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau, 89030-000 Brazil
| | - Sávio Leandro Bertoli
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau, 89030-000 Brazil
| | - Carolina Krebs de Souza
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau, 89030-000 Brazil
| |
Collapse
|
29
|
Sun Y, Zhang M, Adhikari B, Devahastin S, Wang H. Double-layer indicator films aided by BP-ANN-enabled freshness detection on packaged meat products. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Tang C, Zhao Z, Yang M, Lu X, Fu L, Jiang G. Preparation and characterization of sodium cellulose sulfate/chitosan composite films loaded with curcumin for monitoring pork freshness. Curr Res Food Sci 2022; 5:1475-1483. [PMID: 36132488 PMCID: PMC9483810 DOI: 10.1016/j.crfs.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Colorimetric films were prepared by incorporating curcumin into a sodium cellulose sulfate/chitosan composite. The morphology mechanical, and water vapor properties of the films were investigated, and their practical use in pork preservation was evaluated. The formula with the same charge ratio of sodium cellulose sulfate and chitosan had the highest tensile strength (TS). After the addition of curcumin, the tensile strength increased, whereas the water vapor permeability (WVP) decreased. The colorimetric film showed distinguishable color changes between the pH ranges of 3–10. The colorimetric film packaging extended the shelf life of the pork samples by 4 days. Moreover, the composite films were able to effectively monitor pork freshness. In conclusion, curcumin incorporated into sodium cellulose sulfate/chitosan composite films may have great potential in food packaging. Sodium cellulose sulfate/chitosan/curcumin films were produced for food packaging. The properties of composite films were enhanced due to electrostatic interaction. The composite films changed their colors in response to the change of pH. The composite films could monitor the freshness and extend shelf life of pork.
Collapse
Affiliation(s)
- Chuan Tang
- College of Life Science and Technology, Dalian University, Dalian, Liaoning, 116622, China
- Dalian Fusheng Natural Medicinal Development Co. Limited, Dalian, Liaoning, 116600, China
- Corresponding author. College of Life Science and Technology, Dalian University, Dalian, Liaoning, 116622, China.
| | - Zhixin Zhao
- College of Life Science and Technology, Dalian University, Dalian, Liaoning, 116622, China
| | - Ming Yang
- College of Life Science and Technology, Dalian University, Dalian, Liaoning, 116622, China
| | - Xuan Lu
- College of Life Science and Technology, Dalian University, Dalian, Liaoning, 116622, China
| | - Li Fu
- Dalian Fusheng Natural Medicinal Development Co. Limited, Dalian, Liaoning, 116600, China
| | - Ge Jiang
- College of Life Science and Technology, Dalian University, Dalian, Liaoning, 116622, China
- Corresponding author.
| |
Collapse
|
31
|
Kang S, Xiao Y, Wang K, Cui M, Chen D, Guan D, Luan G, Xu H. Development and evaluation of gum arabic-based antioxidant nanocomposite films incorporated with cellulose nanocrystals and fruit peel extracts. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Boonsiriwit A, Lee M, Kim M, Inthamat P, Siripatrawan U, Lee YS. Hydroxypropyl methylcellulose/microcrystalline cellulose biocomposite film incorporated with butterfly pea anthocyanin as a sustainable pH-responsive indicator for intelligent food-packaging applications. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Yan J, Cui R, Tang Z, Wang Y, Wang H, Qin Y, Yuan M, Yuan M. Development of pH-sensitive films based on gelatin/chitosan/nanocellulose and anthocyanins from hawthorn (Crataegus scabrifolia) fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Yang J, Fan Y, Cui J, Yang L, Su H, Yang P, Pan J. Colorimetric films based on pectin/sodium alginate/xanthan gum incorporated with raspberry pomace extract for monitoring protein-rich food freshness. Int J Biol Macromol 2021; 185:959-965. [PMID: 34229017 DOI: 10.1016/j.ijbiomac.2021.06.198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
Raspberry pomace extracts (RPE) with different concentrations (0.5 g/L, 1.5 g/L and 3 g/L) were incorporated into pectin/sodium alginate/xanthan gum composite film (PAX) to prepare colorimetric raspberry films (PAXR5, PAXR15 and PAXR30). Fourier Transform Infrared and Scanning Electron Microscopy analysis showed RPE had good compatibility with PAX. Compared to PAX, the raspberry films had lower water vapor permeability and water swelling ratio, higher tensile strength, opacity and antioxidant capacity. The films presented a smoother surface and denser structure than PAX. Furthermore, PAXR15 had an excellent discoloration at pH 1-13, especially at pH 5-10, the color changes of PAXR15 from pink-red-brown-blue-dark green distinguished by the naked eyes. Therefore, it has the potential to become a pH-sensitive film used in monitoring protein-rich food freshness.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; Dezhou Graduate School of North University of China, Dezhou 253034, China.
| | - Yanling Fan
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Jingyan Cui
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Luyao Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Hao Su
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Peilin Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Jie Pan
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
35
|
Zhang C, Sun G, Li J, Wang L. A green strategy for maintaining intelligent response and improving antioxidant properties of κ-carrageenan-based film via cork bark extractive addition. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
A pH indicator film based on chitosan and butterfly pudding extract for monitoring fish freshness. Int J Biol Macromol 2021; 177:328-336. [PMID: 33621573 DOI: 10.1016/j.ijbiomac.2021.02.137] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
A pH indicator film was prepared by mixing natural polymeric chitosan (CH) with natural dye from butterfly pudding extract (BP). The films were determined by color changes at different pH value, absorbance, thickness, moisture content, swelling property, water contact angle, mechanical property, barrier property, and microstructure of films. The structural change of film was analyzed by Fourier transform infrared spectra. The application to monitor fish freshness was also studied. The prepared film was sensitive to the changes in pH value and showed distinct color changes from pink purple to yellow, with pH value ranging from 1 to 14. The films showed visible color changes from purple-blue to dark green during fish preservation. The total volatile basic nitrogen (TVB-N) content and pH value changes of tilapia were closely related to the visual color changes in film. The result indicated that the fabricated film was a highly pH-sensitive film for monitoring fish freshness.
Collapse
|
37
|
Yong H, Liu J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100550] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Avila LB, Barreto ERC, de Souza PK, Silva BDZ, Martiny TR, Moraes CC, Morais MM, Raghavan V, da Rosa GS. Carrageenan-Based Films Incorporated with Jaboticaba Peel Extract: An Innovative Material for Active Food Packaging. Molecules 2020; 25:molecules25235563. [PMID: 33260859 PMCID: PMC7730467 DOI: 10.3390/molecules25235563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022] Open
Abstract
This research investigated the bioactive potential of jaboticaba peel extract (JPE) and proposed an innovative material for food packaging based on carrageenan films incorporated with JPE. The extract was obtained through microwave assisted extraction (MAE) according to central composite rotational design and the optimized conditions showed a combined antimicrobial and antioxidant actions when the extraction process is accomplished at 80 °C and 1 min. The carrageenan film incorporated with JPE was manageable, homogeneous and the presence of JPE into film increased the thickness and improved the light barrier of the film. The results of solubility and mechanical properties did not show significant differences. The benefit of using MAE to improve the recovery of bioactive compounds was demonstrated and the carrageenan film with JPE showed a great strategy to add additives into food packaging.
Collapse
Affiliation(s)
- Luisa Bataglin Avila
- Engineering Graduate Program, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil; (L.B.A.); (T.R.M.)
| | - Elis Regina Correa Barreto
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil; (E.R.C.B.); (P.K.d.S.); (B.D.Z.S.); (M.M.M.)
| | - Paloma Krolow de Souza
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil; (E.R.C.B.); (P.K.d.S.); (B.D.Z.S.); (M.M.M.)
| | - Bárbara De Zorzi Silva
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil; (E.R.C.B.); (P.K.d.S.); (B.D.Z.S.); (M.M.M.)
| | - Thamiris Renata Martiny
- Engineering Graduate Program, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil; (L.B.A.); (T.R.M.)
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil;
| | - Marcilio Machado Morais
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil; (E.R.C.B.); (P.K.d.S.); (B.D.Z.S.); (M.M.M.)
| | - Vijaya Raghavan
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Gabriela Silveira da Rosa
- Engineering Graduate Program, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil; (L.B.A.); (T.R.M.)
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil; (E.R.C.B.); (P.K.d.S.); (B.D.Z.S.); (M.M.M.)
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil;
- Correspondence: ; Tel.: +55-53-9996-722-26
| |
Collapse
|
39
|
Meng F, Zhang C, Li J, Wang L. Self-assembling crystals of an extract of Flos Sophorae Immaturus for improving the antioxidant, mechanical and barrier properties of a cassia gum film. Int J Biol Macromol 2020; 167:1281-1289. [PMID: 33217460 DOI: 10.1016/j.ijbiomac.2020.11.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
A novel antioxidative film was prepared by drying a film-forming solution containing the Flos Sophorae Immaturus extract (FSIE) (0-3.5%) and cassia gum (CG). Scanning electron microscopy (SEM) showed that FSIE was successfully compounded with CG. Although the addition of FSIE slightly increased the water vapor permeability (WVP) and O2 permeability (OP) of the film, it also improved its ability to block ultraviolet light significantly. The appropriate amounts of FSIE increased the tensile strength (TS) from 20.9 MPa to 30.2 MPa but reduced the elongation at break (EB) from 38.7% to 27.6%. The films doped with FSIE exhibited strong antioxidative activity and high rates of free radical scavenging. Total phenols exhibited a positive trend as the amount of FSIE increased in 50% of ethanol. The practical application of these composite films was investigated by evaluating the quality of lard wrapped in the films. After 25 d, the acid value (XAV) and peroxide value (POV) of lard packaged in CG/FSIE2% were lower than the values for lard packaged in CG/FSIE0% and plastic bag. These results showed that the CG/FSIE film had superior antioxidative activity compared to films made from plastic and pure CG.
Collapse
Affiliation(s)
- Fansong Meng
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Cijian Zhang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Jian Li
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
40
|
Roy S, Rhim JW. Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr 2020; 61:2297-2325. [PMID: 32543217 DOI: 10.1080/10408398.2020.1776211] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, interest in smart packaging, which can show the color change of the packaging film according to the state of the food and evaluate the quality or freshness of the packaged food in real-time, is increasing. As a color indicator, a natural colorant, anthocyanin, drew a lot of attention due to their various colors as well as useful functions properties such as antioxidant activity and anti-carcinogenic and anti-inflammatory effects, prevention of cardiovascular disease, obesity, and diabetes. In particular, the pH-responsive color-changing function of anthocyanins is useful for making color indicator smart packaging films. This review addressed the latest information on the use of natural pigment anthocyanins for intelligent and active food packaging applications. Recent studies on eco-friendly biodegradable polymer-based color indicator films incorporated with anthocyanins have been addressed. Also, studies on the use of smart packaging films to monitor the freshness of foods such as milk, meat, and fish were reviewed. This review highlights the potential and challenges for the use of anthocyanins as pH-responsive color-changing films for intelligent food packaging applications, which may be beneficial for further development of smart color indicator films for practical use.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
41
|
Jamróz E, Kopel P. Polysaccharide and Protein Films with Antimicrobial/Antioxidant Activity in the Food Industry: A Review. Polymers (Basel) 2020; 12:E1289. [PMID: 32512853 PMCID: PMC7361989 DOI: 10.3390/polym12061289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
From an economic point of view, the spoilage of food products during processing and distribution has a negative impact on the food industry. Lipid oxidation and deterioration caused by the growth of microorganisms are the main problems during storage of food products. In order to reduce losses and extend the shelf-life of food products, the food industry has designed active packaging as an alternative to the traditional type. In the review, the benefits of active packaging materials containing biopolymers (polysaccharides and/or proteins) and active compounds (plant extracts, essential oils, nanofillers, etc.) are highlighted. The antioxidant and antimicrobial activity of this type of film has also been highlighted. In addition, the impact of active packaging on the quality and durability of food products during storage has been described.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| |
Collapse
|