1
|
Li Y, Li Y, Gao H, Liu J, Liang H. Edible thermosensitive chitosan/hydroxypropyl β-cyclodextrin hydrogel with natural licoricidin for enhancing oral health: Biofilm disruption and demineralization prevention. Int J Biol Macromol 2024; 282:136647. [PMID: 39423986 DOI: 10.1016/j.ijbiomac.2024.136647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Dental caries, a widespread and significantly detrimental health condition, is characterized by demineralization, pain, compromised tooth functionality, and various other adverse effects. Licoricidin (LC), a natural isoflavonoid, demonstrates potent antimicrobial properties for maintaining oral health. However, its practical application is significantly hindered by its limited water solubility and susceptibility to removal within the oral environment. To tackle this issue, we developed a delivery oral system by an edible thermosensitive chitosan- disodium beta-glycerol phosphate pentahydrate (CS/β-GP) hydrogel to load LC/Hydroxypropyl beta-cyclodextrin (HP-β-CD) inclusion complexes. These hydrogels (LC/HP-β-CD/CS/β-GP) could solidify rapidly at oral temperature and sustainably release LC, thereby preventing its rapid clearance from the oral cavity. We confirmed the significant antibacterial activity of this hydrogel against Streptococcus mutans and Staphylococcus aureus. Additionally, the HP-β-CD combination enhanced LC to penetrate bacterial biofilms and inhibit biofilm growth, leading to leakage of cellular proteins and DNA. Additionally, we studied the effect of LC/HP-β-CD/CS/β-GP on intracellular ROS levels and MMP, comprehensively exploring its antimicrobial mechanism. Furthermore, LC/HP-β-CD/CS/β-GP exhibited the ability to inhibit demineralization and demonstrated excellent biocompatibility. In summary, this study presented a safer approach to oral delivering bioactive substances, offering a promising strategy for enhanced oral health and safety.
Collapse
Affiliation(s)
- Yishan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaqian Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Huiling Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianzhang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Fang S, Xia Q, Zhang L, Zhan P, Qing Y, Wu Z, Wang H, Shao L, Liu N, He J, Liu J. Differentiated Fractionation of Various Biomass Resources by p-Toluenesulfonic Acid at Mild Conditions. ACS OMEGA 2023; 8:24247-24255. [PMID: 37457452 PMCID: PMC10339397 DOI: 10.1021/acsomega.3c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Biomass is the ideal substitute for petrochemical resources because of its renewable and abundant sources. p-Toluenesulfonic acid (p-TsOH) can effectively separate lignin from biomass under mild conditions, so it is highly expected in biomass fractionation to improve the utilization efficiency. In this study, we investigated the effect of p-TsOH differentiated fractionation of poplar sawdust, eucalyptus sawdust, and rice straw below 100 °C. According to the experimental results, upon pretreatment by p-TsOH of the three kinds of raw biomass, most of the lignin and hemicellulose of poplar sawdust and eucalyptus sawdust were removed, whereas the cellulose was retained, but most of the hemicellulose and cellulose of rice straw were kept, whereas the lignin was removed at similar conditions. The structures and compositions of pretreatment residues, lignin, and hemicellulose extracted from raw biomass were characterized by XRD, FTIR, HSQC-NMR, XPS, and SEM. The differentiated fractionation mechanism of biomass was analyzed. A better recognition and understanding of the factors affecting biomatrix opening and fractionation will allow for the identification of new pretreatment strategies that improve biomass utilization and permit the rational enzymatic hydrolysis of cellulose.
Collapse
Affiliation(s)
- Shaohua Fang
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiuli Xia
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yan Qing
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hui Wang
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Na Liu
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiaying He
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin Liu
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Shang H, Yang X, Liu H. Temperature-responsive hydrogel prepared from carboxymethyl cellulose-stabilized N-vinylcaprolactam with potential for fertilizer delivery. Carbohydr Polym 2023; 313:120875. [PMID: 37182965 DOI: 10.1016/j.carbpol.2023.120875] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The growth of plants is highly dependent on sufficient water and suitable fertilizer nutrients, but the soil often loses moisture and the fertilizers are low efficiency. To address this issue, the temperature-responsive hydrogels were developed using the N-vinylcaprolactam (NVCL) dispersed in water through the emulsification of carboxymethyl cellulose (CMC) and acrylamide (AM), and urea was loaded into the hydrogel as a fertilizer. The amount of CMC and monomer have an effect on the structure, mechanical properties, swelling ability, and temperature sensitivity of the hydrogel. Therefore, the maximum swelling ratio of the hydrogel can reach 2056 % with the increasing hydrophilic groups, and the hydrogel exhibits a deswelling behavior as the temperature rises to higher than LCST due to the temperature responsiveness. Moreover, the fertilizer can rapidly release when the temperature is higher than LSCT, and exhibits similar release behavior in water and soil. Thus, the temperature-responsive hydrogel shows a great potential application for the controlled release of water and fertilizer in agriculture and forestry.
Collapse
|
4
|
Choudhury A, Sarma S, Sarkar S, Kumari M, Dey BK. Polysaccharides Obtained from Vegetables: an effective source of alternative excipient. J Pharmacopuncture 2022; 25:317-325. [PMID: 36628349 PMCID: PMC9806151 DOI: 10.3831/kpi.2022.25.4.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 02/11/2022] [Accepted: 12/01/2022] [Indexed: 12/30/2022] Open
Abstract
Polymers are the major constructive material of pharmaceutical formulations that play a prime role in designing effective drug-delivery systems and releasing drugs at their sites of application. Polymers are composed of multiple repeating units of high molecular mass components with attendant properties. Most synthetic polymers are non-biocompatible, expensive, and extremely inclined to deliver adverse impacts. Meanwhile, edible polymers obtained from natural sources have gained remarkable recognition for their promising use in modern medicine. Moreover, polymers derived from natural sources are generally preferred due to certain of their unique features such as abundant availability, biocompatibility, nontoxicity, economical, safe, and effective functions that fit the purpose. Polysaccharides including starch, cellulose, hemicellulose, pectin, and mucilage are identified as a major class of naturally obtained molecules that have a substantial role as functional polymers. This review summarizes the potential role of polysaccharides derived from vegetable sources such as adhesives, anticaking agents, binders, disintegrants, emulsifiers, film-framing agents, and thickeners. This is simply an opportunity to abandon synthetic excipients that hurt our bodies and think back to nature from where we originate.
Collapse
Affiliation(s)
- Ananta Choudhury
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Satyabrat Sarma
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India,Corresponding Author Satyabrat Sarma, Faculty of Pharmaceutical Science, Assam Down Town University, Panikhaiti, Gandhi Nagar, Guwahati, Assam 781026, India, Tel: +91-995-445-4025, E-mail:
| | - Snehashis Sarkar
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Madhusmita Kumari
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Biplab Kumar Dey
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| |
Collapse
|
5
|
Plant Polysaccharides in Engineered Pharmaceutical Gels. Bioengineering (Basel) 2022; 9:bioengineering9080376. [PMID: 36004901 PMCID: PMC9405058 DOI: 10.3390/bioengineering9080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogels are a great ally in the pharmaceutical and biomedical areas. They have a three-dimensional polymeric structure that allows the swelling of aqueous fluids, acting as an absorbent, or encapsulating bioactive agents for controlled drug release. Interestingly, plants are a source of biogels, specifically polysaccharides, composed of sugar monomers. The crosslinking of these polymeric chains forms an architecture similar to the extracellular matrix, enhancing the biocompatibility of such materials. Moreover, the rich hydroxyl monomers promote a hydrophilic behavior for these plant-derived polysaccharide gels, enabling their biodegradability and antimicrobial effects. From an economic point of view, such biogels help the circular economy, as a green material can be obtained with a low cost of production. As regards the bio aspect, it is astonishingly attractive since the raw materials (polysaccharides from plants-cellulose, hemicelluloses, lignin, inulin, pectin, starch, guar, and cashew gums, etc.) might be produced sustainably. Such properties make viable the applications of these biogels in contact with the human body, especially incorporating drugs for controlled release. In this context, this review describes some sources of plant-derived polysaccharide gels, their biological function, main methods for extraction, remarkable applications, and properties in the health field.
Collapse
|
6
|
NVCL-Based Hydrogels and Composites for Biomedical Applications: Progress in the Last Ten Years. Int J Mol Sci 2022; 23:ijms23094722. [PMID: 35563114 PMCID: PMC9103572 DOI: 10.3390/ijms23094722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
Hydrogels consist of three-dimensionally crosslinked polymeric chains, are hydrophilic, have the ability to absorb other molecules in their structure and are relatively easy to obtain. However, in order to improve some of their properties, usually mechanical, or to provide them with some physical, chemical or biological characteristics, hydrogels have been synthesized combined with other synthetic or natural polymers, filled with inorganic nanoparticles, metals, and even polymeric nanoparticles, giving rise to composite hydrogels. In general, different types of hydrogels have been synthesized; however, in this review, we refer to those obtained from the thermosensitive polymer poly(N-vinylcaprolactam) (PNVCL) and we focus on the definition, properties, synthesis techniques, nanomaterials used as fillers in composites and mainly applications of PNVCL-based hydrogels in the biomedical area. This type of material has great potential in biomedical applications such as drug delivery systems, tissue engineering, as antimicrobials and in diagnostic and bioimaging.
Collapse
|
7
|
Feng C, Zhu J, Hou Y, Qin C, Chen W, Nong Y, Liao Z, Liang C, Bian H, Yao S. Effect of temperature on simultaneous separation and extraction of hemicellulose using p-toluenesulfonic acid treatment at atmospheric pressure. BIORESOURCE TECHNOLOGY 2022; 348:126793. [PMID: 35121097 DOI: 10.1016/j.biortech.2022.126793] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Hemicelluloses were effectively separated using p-toluenesulfonic acid (p-TsOH) treatment at high temperature. High temperature and pressure promoted hydrolysis of hemicellulose, which limited its value upon recovery. In this study, bagasse hemicellulose was separated and extracted by p-TsOH treatment at atmospheric pressure. The effects of temperature, p-TsOH concentration, and time on hemicellulose separation and extraction were investigated. The optimal conditions were 80 °C, 3.0% p-TsOH, and 120 min. The separation and extraction yield of hemicellulose was 73.23% and 36.02%, respectively. Extraction hemicellulose with 95.60% purity was obtained. In addition, the dissolution mechanism of hemicellulose was analyzed. Degradation of β-glycosidic bonds was inhibited. Benzyl ether bond between carbohydrates and lignin was selectively cleaved. The skeleton structure of xylan in hemicellulose was protected while the functional groups of branch chain were severely damaged. It provides a valuable theoretical basis for the efficient separation and extraction of hemicellulose.
Collapse
Affiliation(s)
- Chengqi Feng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yajun Hou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Wangqian Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuhao Nong
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhangpeng Liao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
8
|
Wu H, Zhang R, Hu B, He Y, Zhang Y, Cai L, Wang L, Wang G, Hou H, Qiu X. A porous hydrogel scaffold mimicking the extracellular matrix with swim bladder derived collagen for renal tissue regeneration. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Lin X, Guo L, Shaghaleh H, Hamoud YA, Xu X, Liu H. A TEMPO-oxidized cellulose nanofibers/MOFs hydrogel with temperature and pH responsiveness for fertilizers slow-release. Int J Biol Macromol 2021; 191:483-491. [PMID: 34562535 DOI: 10.1016/j.ijbiomac.2021.09.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
In this work, a kind of MOF MIL-100(Fe)@CNFs hydrogel (MC) based on TEMPO-oxidized cellulose nanofibers (CNFs) for fertilizers slow-release was prepared by free-radical polymerization, where N-vinyl caprolactam (NVCL) and CNFs were involved to exhibit temperature and pH response, respectively. Particularly, porous MIL-100(Fe), a kind of metal organic frameworks (MOFs), was introduced to optimize the load and slow-release capabilities. The Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis were used to characterize. The swelling behaviors and water-retention capabilities of hydrogels were evaluated. Using urea as the model fertilizer, the slow-release mechanism was revealed. Wheat was used as the model crop to evaluate the practical growth status. Compared with MC-0% hydrogels, the MC-10% hydrogels exhibited a better swelling capacity (37 g/g), water-retention (22.78%) and slow-release performance (40.84%). It also exhibited sensitivities to temperature and pH for regulating urea release. Besides, the number of tillers and leaves of wheat fertilized with MC hydrogels significantly increased, as did the photosynthetic rate. In conclusion, the MC-0% hydrogels had a positive influence on crops growth, and promoted the possible utilization of hydrogels in slow-release fertilizers.
Collapse
Affiliation(s)
- Xiangyu Lin
- College of Chemical Engineering, Advanced Analysis and Testing Center, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, Jiangsu Province, China
| | - Lizhen Guo
- College of Chemical Engineering, Advanced Analysis and Testing Center, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, Jiangsu Province, China
| | - Hiba Shaghaleh
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Xu Xu
- College of Chemical Engineering, Advanced Analysis and Testing Center, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, Jiangsu Province, China.
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
10
|
Bacteriophage Delivery Systems Based on Composite PolyHIPE/Nanocellulose Hydrogel Particles. Polymers (Basel) 2021; 13:polym13162648. [PMID: 34451188 PMCID: PMC8401677 DOI: 10.3390/polym13162648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/27/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
The role of bacteriophage therapy in medicine has recently regained an important place. Oral phage delivery for gastrointestinal treatment, transport through the stomach, and fast release in the duodenum is one of such applications. In this work, an efficient polyHIPE/hydrogel system for targeted delivery of bacteriophages with rapid release at the target site is presented. T7 bacteriophages were encapsulated in low crosslinked anionic nanocellulose-based hydrogels, which successfully protected phages at pH < 3.9 (stomach) and completely lost the hydrogel network at a pH above 3.9 (duodenum), allowing their release. Hydrogels with entrapped phages were crosslinked within highly porous spherical polyHIPE particles with an average diameter of 24 μm. PolyHIPE scaffold protects the hydrogels from mechanical stimuli during transport, preventing the collapse of the hydrogel structure and the unwanted phage release. On the other hand, small particle size, due to the large surface-to-volume ratio, enables rapid release at the target site. As a consequence, a fast zero-order release was achieved, providing improved patient compliance and reduced frequency of drug administration. The proposed system therefore exhibits significant potential for a targeted drug delivery in medicine and pharmacy.
Collapse
|
11
|
A new Glucose-Responsive delivery system based on Sulfonamide-phenylboronic acid for subcutaneous insulin injection. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Biocompatible smart cellulose nanofibres for sustained drug release via pH and temperature dual-responsive mechanism. Carbohydr Polym 2020; 249:116876. [DOI: 10.1016/j.carbpol.2020.116876] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023]
|
13
|
Kopač T, Krajnc M, Ručigaj A. A mathematical model for pH-responsive ionically crosslinked TEMPO nanocellulose hydrogel design in drug delivery systems. Int J Biol Macromol 2020; 168:695-707. [PMID: 33246006 DOI: 10.1016/j.ijbiomac.2020.11.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022]
Abstract
Ionically crosslinked hydrogels based on TEMPO nanocelullose and alginate were prepared to develop a generalized pH value, temperature and biopolymer concentration dependent mathematical model. The distinctive attention was in the demonstration of hydrogen bonds effects in the mathematical model, prevailing especially in the field of low crosslink densities of TEMPO nanocellulose hydrogel in acid medium. Accordingly, alginate hydrogels were subjected to the research as comparable samples with less significant hydrogel bonds effect. The equation was built upon the determination of the average mesh size in a TEMPO nanocellulose and alginate hydrogel network and studying its changes in different pH release environments. Based on rheological measurements of TEMPO nanocellulose and alginate from the basic and acidic release environment, the mechanism of swelling and shrinkage was thoroughly discussed as well as the influence of substituent groups, ionic interactions and hydrogen bonds in different pH medium were evaluated. Due to the protonation of carboxylic groups, TEMPO nanocellulose and alginate hydrogels shrink in an acid environment. The presented approach will accelerate, improve and reduce the cost of research in the field of controlled release technology with target drug delivery.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Matjaž Krajnc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Aleš Ručigaj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
14
|
Kıvanç MR, Ozay O, Ozay H, Ilgin P. Removal of anionic dyes from aqueous media by using a novel high positively charged hydrogel with high capacity. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1847658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mehmet Rıza Kıvanç
- Department of Chemistry, Faculty of Education, Van Yüzüncü Yıl University, Van, Turkey
| | - Ozgur Ozay
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science and Arts, Canakkale Onsekiz Mart University, Canakkale, Turkey
- Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Hava Ozay
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science and Arts, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Pinar Ilgin
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
15
|
High-strength and amphiphilic epoxidized soybean oil-modified poly(vinyl alcohol) hydrogels. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03462-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|