1
|
Nandi SK, Panda AK, Chakraborty A, Rathee S, Roy I, Barik S, Mohapatra SS, Biswas A. Role of ATP-Small Heat Shock Protein Interaction in Human Diseases. Front Mol Biosci 2022; 9:844826. [PMID: 35252358 PMCID: PMC8890618 DOI: 10.3389/fmolb.2022.844826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 01/18/2023] Open
Abstract
Adenosine triphosphate (ATP) is an important fuel of life for humans and Mycobacterium species. Its potential role in modulating cellular functions and implications in systemic, pulmonary, and ocular diseases is well studied. Plasma ATP has been used as a diagnostic and prognostic biomarker owing to its close association with disease’s progression. Several stresses induce altered ATP generation, causing disorders and illnesses. Small heat shock proteins (sHSPs) are dynamic oligomers that are dominantly β-sheet in nature. Some important functions that they exhibit include preventing protein aggregation, enabling protein refolding, conferring thermotolerance to cells, and exhibiting anti-apoptotic functions. Expression and functions of sHSPs in humans are closely associated with several diseases like cataracts, cardiovascular diseases, renal diseases, cancer, etc. Additionally, there are some mycobacterial sHSPs like Mycobacterium leprae HSP18 and Mycobacterium tuberculosis HSP16.3, whose molecular chaperone functions are implicated in the growth and survival of pathogens in host species. As both ATP and sHSPs, remain closely associated with several human diseases and survival of bacterial pathogens in the host, therefore substantial research has been conducted to elucidate ATP-sHSP interaction. In this mini review, the impact of ATP on the structure and function of human and mycobacterial sHSPs is discussed. Additionally, how such interactions can influence the onset of several human diseases is also discussed.
Collapse
Affiliation(s)
- Sandip K. Nandi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| | - Alok Kumar Panda
- School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Shivani Rathee
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Ipsita Roy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| |
Collapse
|
2
|
Chakraborty A, Ghosh R, Biswas A. Interaction of constituents of MDT regimen for leprosy with Mycobacterium leprae HSP18: impact on its structure and function. FEBS J 2021; 289:832-853. [PMID: 34555271 DOI: 10.1111/febs.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Mycobacterium leprae, the causative organism of leprosy, harbors many antigenic proteins, and one such protein is the 18-kDa antigen. This protein belongs to the small heat shock protein family and is commonly known as HSP18. Its chaperone function plays an important role in the growth and survival of M. leprae inside infected hosts. HSP18/18-kDa antigen is often used as a diagnostic marker for determining the efficacy of multidrug therapy (MDT) in leprosy. However, whether MDT drugs (dapsone, clofazimine, and rifampicin) do interact with HSP18 and how these interactions affect its structure and chaperone function is still unclear. Here, we report evidence of HSP18-dapsone/clofazimine/rifampicin interaction and its impact on the structure and chaperone function of HSP18. These three drugs interact efficiently with HSP18 (having submicromolar binding affinity) with 1 : 1 stoichiometry. Binding of these MDT drugs to the 'α-crystallin domain' of HSP18 alters its secondary structure and tryptophan micro-environment. Furthermore, surface hydrophobicity, oligomeric size, and thermostability of the protein are reduced upon interaction with these three drugs. Eventually, all these structural alterations synergistically decrease the chaperone function of HSP18. Interestingly, the effect of rifampicin on the structure, stability, and chaperone function of this mycobacterial small heat shock protein is more pronounced than the other two MDT drugs. This reduction in the chaperone function of HSP18 may additionally abate M. leprae survivability during multidrug treatment. Altogether, this study provides a possible foundation for rational designing and development of suitable HSP18 inhibitors in the context of effective treatment of leprosy.
Collapse
Affiliation(s)
- Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| |
Collapse
|
3
|
Guo W, Zhang X, Lin L, Wang H, He E, Wang G, Zhao Q. The disulfiram/copper complex induces apoptosis and inhibits tumor growth in human osteosarcoma by activating the ROS/JNK signaling pathway. J Biochem 2021; 170:275-287. [PMID: 33792698 DOI: 10.1093/jb/mvab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Given the huge cost, long research and development (R&D) time and uncertain side effects of discovering new drugs, drug repositioning of those approved to treat diseases clinically as new drugs for other pathological conditions, especially cancers, is a potential alternative strategy. Disulfiram (DSF), an old drug used to treat alcoholism, has been found to exhibit anticancer activity and improve chemotherapeutic efficacy in cancers by an increasing number of studies. In addition, the combination of DSF and copper may be a more effective therapeutic strategy. In this study, we report the toxicity of the DSF/Cu complex to human osteosarcoma both in vitro and in vivo. DSF/Cu significantly inhibited the proliferation and clonogenicity of osteosarcoma cell lines. Furthermore, the generation of ROS was triggered by DSF/Cu, and cell arrest, autophagy and apoptosis were induced in a ROS-dependent manner. The underlying mechanism of this process was explored, and DSF/Cu may mainly inhibit osteosarcoma by inducing apoptosis by activating the ROS/JNK pathway. DSF/Cu also inhibited osteosarcoma growth in a xenograft model with low levels of organ-related toxicities. These results suggest that the DSF/Cu complex could be an efficient and safe option for the treatment of osteosarcoma in the clinic.
Collapse
Affiliation(s)
- Weihong Guo
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xiaoxing Zhang
- Department of Orthopedic Surgery, Chongqing University Central Hospital, Chongqing, 400000, China
| | - Longshuai Lin
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hongjie Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Enjun He
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Qinghua Zhao
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| |
Collapse
|
4
|
Chakraborty A, Biswas A. Structure, stability and chaperone function of Mycobacterium leprae Heat Shock Protein 18 are differentially affected upon interaction with gold and silver nanoparticles. Int J Biol Macromol 2020; 152:250-260. [PMID: 32084461 DOI: 10.1016/j.ijbiomac.2020.02.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have several biomedical applications. However, the effective usage of these two nanoparticles is impeded due to limited understanding of their interaction with proteins including small heat shock proteins (sHSPs). Specifically, no evidences of interaction of these two nanoparticles with HSP18 (an antigenic protein) which is an important factor for the growth and survival of M. leprae (the causative organism of leprosy) are available in the literature. Here, we report for the first time evidences of "HSP18-AuNPs/AgNPs interaction" and its impact on the structure and chaperone function of HSP18. Interaction of citrate-capped AuNPs/AgNPs (~20 nm diameter) to HSP18 alters the secondary and tertiary structure of HSP18 in a distinctly opposite manner; while "HSP18-AuNPs interaction" leads to oligomeric association, "HSP18-AgNPs interaction" results in oligomeric dissociation of the protein. Surface hydrophobicity, thermal stability, chaperone function of HSP18 and survival of thermally stressed E. coli harbouring HSP18 are enhanced upon AuNPs interaction, while all of them are reduced upon interaction with AgNPs. Altogether, our study reveals that HSP18 is an important drug target in leprosy and its chaperone function may possibly plays a vital role in the growth and survival of M. leprae pathogen in infected hosts.
Collapse
Affiliation(s)
- Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|