1
|
Nasher F, Wren BW. Unravelling mechanisms of bacterial recognition by Acanthamoeba: insights into microbial ecology and immune responses. Front Microbiol 2024; 15:1405133. [PMID: 39247694 PMCID: PMC11377244 DOI: 10.3389/fmicb.2024.1405133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Acanthamoeba, are ubiquitous eukaryotic microorganisms, that play a pivotal role in recognizing and engulfing various microbes during predation, offering insights into microbial dynamics and immune responses. An intriguing observation lies in the apparent preference of Acanthamoeba for Gram-negative over Gram-positive bacteria, suggesting potential differences in the recognition and response mechanisms to bacterial prey. Here, we comprehensively review pattern recognition receptors (PRRs) and microbe associated molecular patterns (MAMPs) that influence Acanthamoeba interactions with bacteria. We analyze the molecular mechanisms underlying these interactions, and the key finding of this review is that Acanthamoeba exhibits an affinity for bacterial cell surface appendages that are decorated with carbohydrates. Notably, this parallels warm-blooded immune cells, underscoring a conserved evolutionary strategy in microbial recognition. This review aims to serve as a foundation for exploring PRRs and MAMPs. These insights enhance our understanding of ecological and evolutionary dynamics in microbial interactions and shed light on fundamental principles governing immune responses. Leveraging Acanthamoeba as a model organism, provides a bridge between ecological interactions and immunology, offering valuable perspectives for future research.
Collapse
Affiliation(s)
- Fauzy Nasher
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Díaz del Arco C, Estrada Muñoz L, Cerón Nieto MDLÁ, Molina Roldán E, Fernández Aceñero MJ, García Gómez de las Heras S. Prognostic Influence of Galectin-1 in Gastric Adenocarcinoma. Biomedicines 2024; 12:1508. [PMID: 39062081 PMCID: PMC11275144 DOI: 10.3390/biomedicines12071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Galectin-1 (Gal-1), a member of the human lectin family, has garnered attention for its association with aggressive behavior in human tumors, prompting research into the development of targeted drugs. This study aims to assess the staining pattern and prognostic significance of Gal-1 immunohistochemical expression in a homogeneous cohort of Western patients with gastric cancer (GC). A total of 149 cases were included and tissue microarrays were constructed. Stromal Gal-1 expression was observed to some extent in most tumors, displaying a cytoplasmic pattern. Cases with stromal Gal-1 overexpression showed significantly more necrosis, lymphovascular invasion, advanced pTNM stages, recurrences, and cancer-related deaths. Epithelial Gal-1 expression was present in 63.8% of the cases, primarily exhibiting a cytoplasmic pattern, and its overexpression was significantly associated with lymphovascular invasion, peritumoral lymphocytic infiltration, and tumor-related death. Kaplan/Meier curves for cancer-specific survival (CSS) revealed a significantly worse prognosis for patients with tumors exhibiting stromal or epithelial Gal-1 overexpression. Furthermore, stromal Gal-1 expression stratified stage III patients into distinct prognostic subgroups. In a multivariable analysis, increased stromal Gal-1 expression emerged as an independent prognostic factor for CSS. These findings underscore the prognostic relevance of Gal-1 and suggest its potential as a target for drug development in Western patients with GC.
Collapse
Affiliation(s)
- Cristina Díaz del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lourdes Estrada Muñoz
- Department of Pathology, Rey Juan Carlos Hospital, 28933 Móstoles, Spain;
- Department of Basic Medical Sciences, School of Medicine, Rey Juan Carlos University, 28933 Móstoles, Spain;
| | - María de los Ángeles Cerón Nieto
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | | - María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | |
Collapse
|
3
|
Velkova L, Dolashki A, Petrova V, Pisareva E, Kaynarov D, Kermedchiev M, Todorova M, Dolashka P. Antibacterial Properties of Peptide and Protein Fractions from Cornu aspersum Mucus. Molecules 2024; 29:2886. [PMID: 38930951 PMCID: PMC11206429 DOI: 10.3390/molecules29122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW < 20 kDa and an MW > 20 kDa against five bacterial pathogens-Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW < 20 kDa. Some bioactive compounds in a mucus fraction with an MW > 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance.
Collapse
Affiliation(s)
- Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Ventsislava Petrova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Emiliya Pisareva
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Momchil Kermedchiev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Maria Todorova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
- Businesslab Ltd., Acad. G. Bonchev Str., bl. 4A, 1113 Sofia, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| |
Collapse
|
4
|
Liu Y, Yang T, Rong J, Yuan J, Man L, Wei M, Fan J, Lan Y, Liu Y, Gong G, Lu Y, Song X, Wang Z, Huang L. Integrated analysis of natural glycans using a versatile pyrazolone-type heterobifunctional tag ANPMP. Carbohydr Polym 2024; 327:121617. [PMID: 38171699 DOI: 10.1016/j.carbpol.2023.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Glycans mediate various biological processes through carbohydrate-protein interactions, and glycan microarrays have become indispensable tools for understanding these mechanisms. However, advances in functional glycomics are hindered by the absence of convenient and universal methods for obtaining natural glycan libraries with diverse structures from glycoconjugates. To address this challenge, we have developed an integrative approach that enables one-pot release and simultaneously capture, separation, structural characterization, and functional analysis of N/O-glycans. Using this approach, glycoconjugates are incubated with a pyrazolone-type heterobifunctional tag-ANPMP to obtain glycan-2ANPMP conjugates, which are then converted to glycan-AEPMP conjugates. We prepared a tagged glycan library from porcine gastric mucin, soy protein, human milk oligosaccharides, etc. Following derivatization by N-acetylation and permethylation, glycans were subjected to detailed structural characterization by ESI-MSn analysis, which revealed >83 highly pure glycan-AEPMPs containing various natural glycan epitopes. A shotgun microarray is constructed to study the fine details of glycan-bindings by proteins and antisera.
Collapse
Affiliation(s)
- Yuxia Liu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Tong Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jinqiao Rong
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jinhang Yuan
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Lijuan Man
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Ming Wei
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jiangbo Fan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Yao Lan
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Yinchuan Liu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Guiping Gong
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Yu Lu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China.
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China.
| |
Collapse
|
5
|
Jeyachandran S, Radhakrishnan A, Ragavendran C. Harnessing the power of mollusc lectins as immuno-protective biomolecules. Mol Biol Rep 2024; 51:182. [PMID: 38261113 DOI: 10.1007/s11033-023-09018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/25/2023] [Indexed: 01/24/2024]
Abstract
The rapid advancement of molecular research on macromolecules has contributed to the discovery of 'Lectin', a carbohydrate-binding protein which specifically interacts with receptors on the surface of glycans and regulates various cellular activities thereby stimulating immunological functions. Considering the wide variety of sources and immunological significance, research has led to the discovery of lectins in invertebrate molluscs. Such lectins in molluscs mediate active immune response as they lack adaptive immunity. Phylum Mollusca is identified with different types of lectins such as C-lectin, Galectin, P-lectin, I-lectin, and H-lectin, along with other immunologically significant lectin molecules such as F- lectin, R-lectin, ficolins, chitinase like lectin etc., all of these with specific ligand binding and structural diversity. Molluscan C-type lectins are the most functional ones that increase the activity of phagocytic cells through specific carbohydrate binding of antigenic ligands and haemocyte adhesion thereby enhancing the immune response. Helix pomatia agglutinin and Helix aspersa agglutinin are the two H-lectins that were identified within molluscs that could even target cancer-progressing cells through specific binding. Also, these lectins identified in molluscs are proven to be efficient in antibacterial and immunomodulatory functions. These insights attract researchers to identify novel lectins in molluscs and their characterization that play a key role in protection against diseases. This review discusses the structural features of mollusc lectins, their specific binding, molecular interactions and their immunological applications.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Akshaya Radhakrishnan
- PG & Research Department of Biotechnology & Microbiology, National College Autonomous, Tiruchirappalli, Tamil Nadu, 620001, India
| | - Chinnasamy Ragavendran
- Department of Cardiology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India
| |
Collapse
|
6
|
Abou-El-Naga IF, Mogahed NMFH. Immuno-molecular profile for Biomphalaria glabrata/Schistosoma mansoni interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105083. [PMID: 37852455 DOI: 10.1016/j.dci.2023.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The complex innate immune defense of Biomphalaria glabrata, the intermediate host of Schistosoma mansoni, governs the successful development of the intramolluscan stages of the parasite. The interaction between the snail and the parasite involves a complex immune molecular crosstalk between several parasite antigens and the snail immune recognition receptors, evoking different signals and effector molecules. This work seeks to discuss the immune-related molecules that influence compatibility in Biomphalaria glabrata/Schistosoma mansoni interaction and the differential expression of these molecules between resistant and susceptible snails. It also includes the current understanding of the immune molecular determinants that govern the compatibility in sympatric and allopatric interactions, and the expression of these molecules after immune priming and the secondary immune response. Herein, the differences in the immune-related molecules in the interaction of other Biomphalaria species with Schistosoma mansoni compared to the Biomphalaria glabrata model snail are highlighted. Understanding the diverse immune molecular determinants in the snail/schistosome interaction can lead to alternative control strategies for schistosomiasis.
Collapse
|
7
|
Cerullo AR, McDermott MB, Pepi LE, Liu ZL, Barry D, Zhang S, Yang X, Chen X, Azadi P, Holford M, Braunschweig AB. Comparative mucomic analysis of three functionally distinct Cornu aspersum Secretions. Nat Commun 2023; 14:5361. [PMID: 37660066 PMCID: PMC10475054 DOI: 10.1038/s41467-023-41094-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Every animal secretes mucus, placing them among the most diverse biological materials. Mucus hydrogels are complex mixtures of water, ions, carbohydrates, and proteins. Uncertainty surrounding their composition and how interactions between components contribute to mucus function complicates efforts to exploit their properties. There is substantial interest in commercializing mucus from the garden snail, Cornu aspersum, for skincare, drug delivery, tissue engineering, and composite materials. C. aspersum secretes three mucus-one shielding the animal from environmental threats, one adhesive mucus from the pedal surface of the foot, and another pedal mucus that is lubricating. It remains a mystery how compositional differences account for their substantially different properties. Here, we characterize mucus proteins, glycosylation, ion content, and mechanical properties that could be used to provide insight into structure-function relationships through an integrative "mucomics" approach. We identify macromolecular components of these hydrogels, including a previously unreported protein class termed Conserved Anterior Mollusk Proteins (CAMPs). Revealing differences between C. aspersum mucus shows how considering structure at all levels can inform the design of mucus-inspired materials.
Collapse
Affiliation(s)
- Antonio R Cerullo
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Maxwell B McDermott
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Zhi-Lun Liu
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Diariou Barry
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Sheng Zhang
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Xi Chen
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Physics, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Mande Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, NY, 10024, USA
| | - Adam B Braunschweig
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA.
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
8
|
Silva-Becerril A, Quintero-Martínez A, Hernández-Santoyo A. Structural and functional analysis of a tandem repeat galacturonic acid-binding lectin from the sea hare Aplysia californica. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108513. [PMID: 36584757 DOI: 10.1016/j.fsi.2022.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
A d-galacturonic acid-specific lectin, named AcL, was purified from the sea hare Aplysia californica by galactose-agarose affinity chromatography. AcL has a molecular mass of 27.5 kDa determined by MALDI-TOF mass spectrometry. This lectin shows a good affinity for d-galacturonic acid and a lower affinity for galactosides: raffinose, melibiose, α and β-lactose, and d-galactose. We determined the amino acid sequence of AcL by trypsin digestion and subsequent peptide analysis by mass spectrometry, resulting in a 238 amino acid protein with a theoretical molecular mass of 26.4 kDa. The difference between the theoretical and experimental values can be attributed to post-translational modifications. Thiol-disulfide quantification discerned five disulfide bonds and three free cysteines. The structure of Acl is mainly comprised of beta sheets, determined by circular dichroism, and predicted with AlphaFold. Theoretical models depict three nearly identical tandem domains consisting of two beta sheets each. From docking analysis, we identified AcL glycan-binding sites as multiple conserved motifs in each domain. Furthermore, phylogenetic analysis based on its structure and sequence showed that AcL and its closest homologues (GalULs) form a clear monophyletic group, distinct from other glycan-binding proteins with a jelly-roll fold: lectins of types F and H. GalULs possess four conserved sequence regions that distinguish them and are either ligand-binding motifs or stabilizing network hubs. We suggest that this new family should be referred to as GalUL or D-type, following the traditional naming of lectins; D standing for depilans, the epithet for the species (Aplysia depilans) from which a lectin of this family was first isolated and described.
Collapse
Affiliation(s)
- Areli Silva-Becerril
- Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, Mexico
| | - Adrián Quintero-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, Mexico
| | | |
Collapse
|
9
|
Cavada BS, Oliveira MVD, Osterne VJS, Pinto-Junior VR, Martins FWV, Correia-Neto C, Pinheiro RF, Leal RB, Nascimento KS. Recent advances in the use of legume lectins for the diagnosis and treatment of breast cancer. Biochimie 2022; 208:100-116. [PMID: 36586566 DOI: 10.1016/j.biochi.2022.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Poor lifestyle choices and genetic predisposition are factors that increase the number of cancer cases, one example being breast cancer, the third most diagnosed type of malignancy. Currently, there is a demand for the development of new strategies to ensure early detection and treatment options that could contribute to the complete remission of breast tumors, which could lead to increased overall survival rates. In this context, the glycans observed at the surface of cancer cells are presented as efficient tumor cell markers. These carbohydrate structures can be recognized by lectins which can act as decoders of the glycocode. The application of plant lectins as tools for diagnosis/treatment of breast cancer encompasses the detection and sorting of glycans found in healthy and malignant cells. Here, we present an overview of the most recent studies in this field, demonstrating the potential of lectins as: mapping agents to detect differentially expressed glycans in breast cancer, as histochemistry/cytochemistry analysis agents, in lectin arrays, immobilized in chromatographic matrices, in drug delivery, and as biosensing agents. In addition, we describe lectins that present antiproliferative effects by themselves and/or in conjunction with other drugs in a synergistic effect.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| | - Messias Vital de Oliveira
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Vinícius Jose Silva Osterne
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Vanir Reis Pinto-Junior
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Cornevile Correia-Neto
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ronald Feitosa Pinheiro
- Núcleo de Pesquisa e Desenvolvimento de Medicações (NPDM), Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Kyria Santiago Nascimento
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| |
Collapse
|
10
|
Toiber-Estrella AL, Quintero-Martínez A, Rodríguez-Romero A, Riveros-Rosas H, Hernández-Santoyo A. Structural and evolutionary insights into the multidomain galectin from the red abalone Haliotis rufescens with specificity for sulfated glycans. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1264-1274. [PMID: 36400370 DOI: 10.1016/j.fsi.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Galectins are an evolutionarily ancient family of lectins characterized by their affinity for β-galactosides and a conserved binding site in the carbohydrate recognition domain (CRD). These lectins are involved in multiple physiological functions, including the recognition of glycans on the surface of viruses and bacteria. This feature supports their role in innate immune responses in marine mollusks. Here, we identified and characterized a galectin, from the mollusk Haliotis rufescens (named HrGal), with four CRDs that belong to the tandem-repeat type. HrGal was purified by affinity chromatography in a galactose-agarose resin and exhibited a molecular mass of 64.11 kDa determined by MALDI-TOF mass spectrometry. The identity of HrGal was verified by sequencing, confirming that it is a 555 amino acid protein with a mass of 63.86 kDa. This protein corresponds to a galectin reported in GenBank with accession number AHX26603. HrGal is stable in the presence of urea, reducing agents, and ions such as Cu2+ and Zn2+. The recombinant galectin (rHrGal) was purified from inclusion bodies in the presence of these ions. A theoretical model obtained with the AlphaFold server exhibits four non-identical CRDs, with a β sandwich folding and the representative motifs for binding β-galactosides. This allows us to classify HrGal within the tandem repeat galectin family. On the basis of a phylogenetic analysis, we found that the mollusk sequences form a monophyletic group of tetradomain galectins unrelated to vertebrate galectins. HrGal showed specificity for galactosides and glucosides but only the sulfated sugars heparin and ι-carrageenan inhibited its hemagglutinating activity with a minimum inhibitory concentration of 4 mM and 6.25 X 10-5% respectively. The position of the sulfate groups seemed crucial for binding, both by carrageenans and heparin.
Collapse
Affiliation(s)
| | - Adrián Quintero-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | - Héctor Riveros-Rosas
- Depto. Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | | |
Collapse
|
11
|
Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, Mahal LK. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem Biol 2022; 17:2993-3012. [PMID: 35084820 PMCID: PMC9679999 DOI: 10.1021/acschembio.1c00689] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycans are critical to every facet of biology and medicine, from viral infections to embryogenesis. Tools to study glycans are rapidly evolving; however, the majority of our knowledge is deeply dependent on binding by glycan binding proteins (e.g., lectins). The specificities of lectins, which are often naturally isolated proteins, have not been well-defined, making it difficult to leverage their full potential for glycan analysis. Herein, we use a combination of machine learning algorithms and expert annotation to define lectin specificity for this important probe set. Our analysis uses comprehensive glycan microarray analysis of commercially available lectins we obtained using version 5.0 of the Consortium for Functional Glycomics glycan microarray (CFGv5). This data set was made public in 2011. We report the creation of this data set and its use in large-scale evaluation of lectin-glycan binding behaviors. Our motif analysis was performed by integrating 68 manually defined glycan features with systematic probing of computational rules for significant binding motifs using mono- and disaccharides and linkages. Combining machine learning with manual annotation, we create a detailed interpretation of glycan-binding specificity for 57 unique lectins, categorized by their major binding motifs: mannose, complex-type N-glycan, O-glycan, fucose, sialic acid and sulfate, GlcNAc and chitin, Gal and LacNAc, and GalNAc. Our work provides fresh insights into the complex binding features of commercially available lectins in current use, providing a critical guide to these important reagents.
Collapse
Affiliation(s)
- Daniel Bojar
- Department
of Chemistry and Molecular Biology and Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Gothenburg, Sweden 405 30
| | - Lawrence Meche
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - Guanmin Meng
- Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - William Eng
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - David F. Smith
- Department
of Biochemistry, Glycomics Center, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Richard D. Cummings
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lara K. Mahal
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States,Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2,E-mail:
| |
Collapse
|
12
|
Sparvoli D, Delabre J, Penarete‐Vargas DM, Kumar Mageswaran S, Tsypin LM, Heckendorn J, Theveny L, Maynadier M, Mendonça Cova M, Berry‐Sterkers L, Guérin A, Dubremetz J, Urbach S, Striepen B, Turkewitz AP, Chang Y, Lebrun M. An apical membrane complex for triggering rhoptry exocytosis and invasion in Toxoplasma. EMBO J 2022; 41:e111158. [PMID: 36245278 PMCID: PMC9670195 DOI: 10.15252/embj.2022111158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Jason Delabre
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | | | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lev M Tsypin
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Justine Heckendorn
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Liam Theveny
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Marjorie Maynadier
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Marta Mendonça Cova
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Laurence Berry‐Sterkers
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jean‐François Dubremetz
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Serge Urbach
- IGFUniversité de Montpellier, CNRS, INSERMMontpellierFrance
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
| | - Yi‐Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Maryse Lebrun
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| |
Collapse
|
13
|
Bezerra RP, Conniff AS, Uversky VN. Comparative study of structures and functional motifs in lectins from the commercially important photosynthetic microorganisms. Biochimie 2022; 201:63-74. [PMID: 35839918 DOI: 10.1016/j.biochi.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Photosynthetic microorganisms, specifically cyanobacteria and microalgae, can synthesize a vast array of biologically active molecules, such as lectins, that have great potential for various biotechnological and biomedical applications. However, since the structures of these proteins are not well established, likely due to the presence of intrinsically disordered regions, our ability to better understand their functionality is hampered. We embarked on a study of the carbohydrate recognition domain (CRD), intrinsically disordered regions (IDRs), amino acidic composition, as well as and functional motifs in lectins from cyanobacteria of the genus Arthrospira and microalgae Chlorella and Dunaliella genus using a combination of bioinformatics techniques. This search revealed the presence of five distinctive CRD types differently distributed between the genera. Most CRDs displayed a group-specific distribution, except to C. sorokiniana possessing distinctive CRD probably due to its specific lifestyle. We also found that all CRDs contain short IDRs. Bacterial lectin of Arthrospira prokarionte showed lower intrinsic disorder and proline content when compared to the lectins from the eukaryotic microalgae (Chlorella and Dunaliella). Among the important functions predicted in all lectins were several specific motifs, which directly interacts with proteins involved in the cell-cycle control and which may be used for pharmaceutical purposes. Since the aforementioned properties of each type of lectin were investigated in silico, they need experimental confirmation. The results of our study provide an overview of the distribution of CRD, IDRs, and functional motifs within lectin from the commercially important microalgae.
Collapse
Affiliation(s)
- Raquel P Bezerra
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco-UFRPE, Dom Manoel de Medeiros Ave, Recife, PE, 52171-900, Brazil.
| | - Amanda S Conniff
- Department of Medical Engineering, Morsani College of Medicine and College of Engineering, University of South Florida, Tampa, FL, 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
14
|
Matusiewicz M, Marczak K, Kwiecińska B, Kupis J, Zglińska K, Niemiec T, Kosieradzka I. Effect of extracts from eggs of Helix aspersa maxima and Helix aspersa aspersa snails on Caco-2 colon cancer cells. PeerJ 2022; 10:e13217. [PMID: 35433131 PMCID: PMC9012176 DOI: 10.7717/peerj.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Colorectal cancer is the third most commonly diagnosed cancer. Natural compounds, administered together with conventional chemotherapeutic agent(s) and/or radiotherapy, may be a novel element in the combination therapy of this cancer. Considering the anticancer properties of compounds derived from different tissues of various snail species confirmed earlier, the purpose of the present research was to evaluate the effect of extracts from eggs of Helix aspera maxima and Helix aspersa aspersa snails, and fractions of extracts containing particles of different molecular weights on Caco-2 human epithelial colorectal adenocarcinoma cells. Methods The extracts and fractions were analyzed for antioxidant activity, phenols and total carbohydrates using colorimetric methods. Lipid peroxidation products and glutathione in eggs were also examined using these methods. Crude protein and fat in eggs were determined. Molecular weights of egg proteins and glycoproteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Astaxanthin, selected vitamins and amino acids in eggs were measured using liquid chromatography methods, and minerals by emission spectroscopy, mass spectrometry or X-ray fluorescence. The action of extracts on the cell viability was determined by the MTT (methylthiazolyldiphenyl-tetrazolium bromide) test, based on the mitochondrial oxidative activity, after 24 and 72 h of treatment. The influence of fractions on the cell viability was assayed after 24 h. The effect of extracts on the percentage of live and dead cells was evaluated by the trypan blue assay, in which live cells exclude trypan blue, while dead cells take up this dye, after 12, 24, 48 and 72 h of treatment. Their influence on the integrity of cell membranes was determined based on the activity of LDH (lactate dehydrogenase), released from damaged cells, after 24 and 72 h of treatment. Then, the effect of extracts on the content of lipid peroxidation products in cells was examined using colorimetric method, after 24 h of treatment. Their influence on types of cell death was determined by flow cytometry, after this time. Results The extracts and their fractions containing molecules <3 kDa decreased the cell viability, after 24 h of treatment. The extracts reduced the percentage of live cells (also after 48 h), increased the degree of cell membrane damage and the amount of lipid peroxidation products, induced apoptosis and reduced necrosis. Conclusions Antioxidants, phenols, lipid peroxidation products, anticancer peptides, restriction of methionine, appropriate ratio of essential amino acids to non-essential amino acids, vitamin D3, Ca, Mg, S, Cu, Mn, Zn, Se and other bioactive compounds comprised in the extracts and their additive and synergistic effects may have influenced Caco-2 cells. Natural extracts or the chemical compounds contained in them might be used in the combination therapy of colorectal cancer, which requires further research.
Collapse
Affiliation(s)
- Magdalena Matusiewicz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina Marczak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Kwiecińska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Julia Kupis
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Klara Zglińska
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz Niemiec
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iwona Kosieradzka
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Heine V, Dey C, Bojarová P, Křen V, Elling L. Methods of in vitro study of galectin-glycomaterial interaction. Biotechnol Adv 2022; 58:107928. [DOI: 10.1016/j.biotechadv.2022.107928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
|
16
|
Junior NCP, de Melo ES, de Lima IL, da Rocha RET, Batista M, da Silva RA, Feitosa APS, de Lima Filho JL, Brayner FA, Alves LC. A proteomics evaluation of the primary and secondary immune response of Biomphalaria straminea challenged by Schistosoma mansoni. Parasitol Res 2021; 120:4023-4035. [PMID: 34657981 DOI: 10.1007/s00436-021-07341-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Biomphalaria spp. snails are intermediary hosts of Schistosoma mansoni, etiologic agent of intestinal schistosomiasis, one of the most important neglected tropical diseases. Biomphalaria straminea is an important intermediary host that possess a different phenotype to parasite infection but shows a large geographic distribution and high capacity of new ecologic niche invasion. Our purpose was to characterize for the first time the differentially expressed proteome in B. straminea during two times intervals after primary and secondary exposure to S. mansoni. The hemolymph was collected at 1 and 15 days after primary and secondary exposure of snails to the parasite. Total proteins were extracted and digested with trypsin. LC-MS/MS label-free quantification was performed and analyzed using Maxquant and Perseus software. Proteins were identified and annotated using Blast2GO tools. After 1 day of exposure, most of upregulated proteins are hemoglobin type 2, C and H type lectins, molecules related to cell adhesion, and response to oxidative stress. After 15 days, we found a similar pattern of upregulated proteins but some fibrinogen-related proteins (FREPs) and TEPs homologs were downregulated. Regarding the differentially expressed proteins during secondary response, the principal immune-related proteins upregulated were C and H type lectins, cellular adhesion molecules, biomphalysin, and FREP3. We noted a several upregulated biological processes during both responses that could be the one of the key points of efficacy in the immune response to parasite. Our data suggests different immune mechanisms used by B. straminea snails challenged with S. mansoni.
Collapse
Affiliation(s)
| | - Elverson Soares de Melo
- Department of Parasitology, Aggeu Magalhães Research Center FIOCRUZ Pernambuco, Professor Moraes Rego Avenue, s/n-Campus da UFPE-Cidade Universitária, Recife, PE, CEP: 50.740-465, Brazil
| | - Iasmim Lopes de Lima
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Rubens Emanoel Tavares da Rocha
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Michel Batista
- Carlos Chagas Institute FIOCRUZ Paraná, Mass Spectrometry Facility P02-004, Professor Algacyr Munhoz Mader street, 3775 - Curitiba Industrial City, Curitiba, PR, CEP: 81,350,010, Brazil
| | - Roberto Afonso da Silva
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Ana Paula Sampaio Feitosa
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Jose Luiz de Lima Filho
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Fábio André Brayner
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil.,Department of Parasitology, Aggeu Magalhães Research Center FIOCRUZ Pernambuco, Professor Moraes Rego Avenue, s/n-Campus da UFPE-Cidade Universitária, Recife, PE, CEP: 50.740-465, Brazil
| | - Luiz Carlos Alves
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil.,Department of Parasitology, Aggeu Magalhães Research Center FIOCRUZ Pernambuco, Professor Moraes Rego Avenue, s/n-Campus da UFPE-Cidade Universitária, Recife, PE, CEP: 50.740-465, Brazil
| |
Collapse
|
17
|
The T/Tn-Specific Helix pomatia Lectin Induces Cell Death in Lymphoma Cells Negative for T/Tn Antigens. Cancers (Basel) 2021; 13:cancers13174356. [PMID: 34503166 PMCID: PMC8431231 DOI: 10.3390/cancers13174356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Changes in glycosylation, such as incomplete synthesis and higher density of O-glycans on the cell surface, are frequently observed in cancer cells. Several types of truncated O-glycan structures, e.g., T/Tn antigens, are suspected to disrupt molecular interactions between tumor microenvironment and immune cells, for instance, facilitating cancer immune-escape. Therefore, numerous exogenous lectins targeting aberrant O-glycans are interesting tools for cancer diagnosis, prognosis, and therapy. However, the ability of exolectins to detect subtle alterations in the glycome of tumor cells and to interfere in tumor/healthy cell interactions remains largely unknown. The present article reports for the first time that the Helix pomatia (HPA) lectin, a well-known T/Tn-specific lectin, currently used as a tool in cancer diagnostics, kills Tn-positive leukemia cells and Tn-negative lymphoma cells but does not affect healthy lymphocytes. Thus, HPA could be used to discriminate between tumor and healthy cells, and detect subtle alterations in the glycosylation profile. Abstract Morniga G is a T/Tn-specific lectin, inducing cell death in Tn-positive leukemias but not in healthy lymphocytes. Helix pomatia lectin (HPA) is another T/Tn-specific lectin, currently used as tool for cancer diagnostics. The HPA-mediated tumor cell death was evaluated on human leukemia and mouse lymphoma cells, and compared to the effect of Morniga G. Both lectins induced an equivalent percentage of cell death in Tn-positive Jurkat human leukemia. In contrast, EL4 mouse lymphoma resisted Morniga G-mediated cytotoxicity but were killed by HPA at concentrations of 2.5 μg/mL (0.032 nM) and higher. In both malignant cells, HPA-mediated cell death showed features compatible with apoptosis (annexin-externalization, caspase-activation, mitochondrial membrane depolarization, and ROS production). Cytometry analysis indicated that EL4 cells are T/Tn-negative. Because previous results showed a high amount of N-acetylgalactosamine (GalNAc, sugar present in Tn antigen) on EL4 cell surface, this GalNAc could be involved in the formation of truncated O-glycans other than the T/Tn residues. When compared to Morniga G, bioinformatic analysis suggested that HPA benefits from an extended carbohydrate-binding site, better adapted than Morniga G to the accommodation of more complex branched and truncated O-glycans (such as core 2). Finally, HPA killed EL4 cells but not healthy lymphocytes in a mixture of lymphoma cells + lymphocytes, suggesting that HPA selectively triggers tumor cell death.
Collapse
|
18
|
Lebreton A, Bonnardel F, Dai YC, Imberty A, Martin FM, Lisacek F. A Comprehensive Phylogenetic and Bioinformatics Survey of Lectins in the Fungal Kingdom. J Fungi (Basel) 2021; 7:453. [PMID: 34200153 PMCID: PMC8227253 DOI: 10.3390/jof7060453] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
Fungal lectins are a large family of carbohydrate-binding proteins with no enzymatic activity. They play fundamental biological roles in the interactions of fungi with their environment and are found in many different species across the fungal kingdom. In particular, their contribution to defense against feeders has been emphasized, and when secreted, lectins may be involved in the recognition of bacteria, fungal competitors and specific host plants. Carbohydrate specificities and quaternary structures vary widely, but evidence for an evolutionary relationship within the different classes of fungal lectins is supported by a high degree of amino acid sequence identity. The UniLectin3D database contains 194 fungal lectin 3D structures, of which 129 are characterized with a carbohydrate ligand. Using the UniLectin3D lectin classification system, 109 lectin sequence motifs were defined to screen 1223 species deposited in the genomic portal MycoCosm of the Joint Genome Institute. The resulting 33,485 putative lectin sequences are organized in MycoLec, a publicly available and searchable database. These results shed light on the evolution of the lectin gene families in fungi.
Collapse
Affiliation(s)
- Annie Lebreton
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (A.L.); (Y.-C.D.)
| | - François Bonnardel
- University of Grenoble-Alpes, CNRS, CERMAV, 38000 Grenoble, France;
- Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
- Computer Science Department, UniGe, CH-1227 Geneva, Switzerland
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (A.L.); (Y.-C.D.)
| | - Anne Imberty
- University of Grenoble-Alpes, CNRS, CERMAV, 38000 Grenoble, France;
| | - Francis M. Martin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (A.L.); (Y.-C.D.)
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d’Excellence ARBRE, Centre INRAE GrandEst-Nancy, 54280 Champenoux, France
| | - Frédérique Lisacek
- Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
- Computer Science Department, UniGe, CH-1227 Geneva, Switzerland
- Section of Biology, UniGe, CH-1205 Geneva, Switzerland
| |
Collapse
|